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Executive Summary 
 
 
The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored 

research project whose overarching goals are to improve the accuracy of short-term wind energy 

forecasts, and to demonstrate the economic value of these improvements.  WFIP participants included 

DOE and National Oceanic and Atmospheric Administration (NOAA) laboratories; the NOAA National 

Weather Service (NWS); and two teams of partners from the private sector and university communities, 

led by AWS Truepower and WindLogics.   

 

WFIP considered two avenues for improving wind energy forecasts.  The first was through the 

assimilation of new meteorological observations into numerical weather prediction (NWP) models.  New 

instrumentation was deployed or acquired during concurrent year-long field campaigns in two high wind 

energy resource areas of the U.S.  The first was in the upper Great Plains, where DOE and NOAA 

partnered with the WindLogics team.  The second field campaign was centered in west Texas, where 

DOE and NOAA partnered with the AWS Truepower team.   The WFIP observing systems included 12 

wind profiling radars, 12 sodars, and several lidars.  In addition, WFIP allowed for NOAA to collect and 

assimilate for the first time proprietary tall tower (184 sites) and wind turbine nacelle anemometer (411 

sites) meteorological observations from the wind energy industry. A necessary key component of WFIP 

was to develop improved quality control (QC) procedures to ensure that the assimilated observations 

were as accurate as possible, as a few erroneous observations can easily negate the positive impact of 

many accurate observations when assimilated into a NWP model.  With proper data QC algorithms 

applied, good agreement was found between the co-located sodar, wind profiling radar, and lidar 

observed wind speeds.  

 
The second avenue for improving wind energy forecasts was to improve the NWP models directly.  

Midway through the WFIP field program, NOAA/NWS upgraded its operational hourly-updated NWP 

forecast model from the Rapid Update Cycle (RUC) model to the Rapid Refresh (RAP) model, and the 

impacts of this upgrade have been evaluated using WFIP observations.  During the course of WFIP 

NOAA/ESRL made further improvements to the research version of the RAP, and to the research High 

Resolution Rapid Refresh (HRRR) model, incorporating more advanced  model  physics and numerics, 

new data types assimilated, and better data assimilation procedures.  Also, with WFIP funding NOAA 

was able to obtain the computer infrastructure to make the massive amounts of raw model output from 

the HRRR model available in real-time to both the two private sector teams, as well as to  the entire 

wind energy industry. 

 

Pseudo-power forecasts were evaluated by converting tall tower (mostly 60-80m) and model wind 

speeds to equivalent power using a standard International Electrotechnical Commission Class 2 (IEC2) 

power curve. Percent mean absolute error (MAE) power improvements between the NWS RUC 

operational hourly-updated forecast model and the real-time research NOAA/Earth System Research 

Laboratory (ESRL) RAP hourly-updated forecast model, calculated over the first 6 months of the WFIP 

field campaign, were significant.  In the Northern Study Area (NSA) a 13% power improvement at 
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forecast hour 01 was found, decreasing to a 6-7% improvement at forecast hour 15.  In the Southern 

Study Area (SSA) a 15% power improvement at forecast hour 01 was observed, decreasing to 5% 

improvement for a 15 h forecast.  This improvement reflects the combined effects of the better RAP 

model versus the RUC model, as well as the contribution from assimilation of the WFIP observations into 

the research RAP model.  

 

To quantify the impact of assimilation of the additional WFIP observations only, data denial (DD) 

experiments were run with the RAP and the NWS/North American Mesoscale (NAM) models.  Six DD 

episodes were run with the RAP, each from 7-12 days long, spanning all four seasons of the year.  Using 

conventional statistical analysis with the tall tower data sets for verification, the experimental 

simulations were found to improve the average MAE power forecast skill at the 95% confidence level for 

the first 7 forecast hours in the NSA, and through forecast hour 03 in the SSA.  MAE power forecast skill 

improvement in the first 6 forecast hours ranged from 8% to 3% in the NSA, and from 6% to 1% in the 

SSA.  Although the NAM DD simulations were only run for two episodes (December and January) the 

results are fully consistent with the findings from the RAP model over the larger data set.  The forecast 

skill improvement due to assimilation of the new WFIP observations was also found to be dependent on 

the location of the verifying site.  Verifying tower sites that were on the periphery of the NSA and SSA 

domains had smaller improvements than those located within the core observing network area, 

demonstrating the increased benefit of having more observations spread over a larger geographic area.  

 

The degree of spatial averaging of the forecasts and observations before they are compared is found to 

have a profound impact on the skill of the forecast, with the power MAE decreasing by more than a 

factor of 2 as the spatial averaging extends to the full study area domain.  This demonstrates the 

advantage to utilities and grid operators of having spatially distributed generation, not only because it 

provides less variability in generation, but also because the generation that is produced can be better 

forecast.   Surprisingly, the impact of assimilation of the new WFIP observations measured as a percent 

improvement stays constant or even increases with the degree of spatial averaging, up to domains on 

the order of 400 km x 600km, indicating that even from a balancing authority’s point of view, there is 

significant value to be gained from deploying and assimilating new observations.  

 

A wind ramp tool and metric was developed for WFIP, and used to evaluate the skill of the RAP model at 

forecasting ramp events. Assimilation of the WFIP observations was found to improve the ramp forecast 

skill, averaged over the first 9 forecast hours, by more than 10% in the NSA, and by 3.5% in the SSA.   

 

Reasons for the greater impact of the special WFIP observations in the NSA than in the SSA are, first, the 

NSA had more tall tower observations, more wind profiler observations, and the addition of nacelle 

anemometer observations; the greater numbers of observations is likely to have contributed to the 

greater improvement in both conventional MAE and ramp forecast skill. Second, the new observations 

were spread over a wider geographic area in the NSA than in the SSA, allowing for the model initial field 

improvements to be more robust and affect a wider area, thereby having a more lasting positive impact 

before advecting out of the study area.   
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Among the key successes of WFIP is that it has demonstrated that even in this era when large quantities 

of satellite and other data are routinely incorporated into operational weather forecast models, wind 

power forecasts still can be improved substantially though the assimilation of additional new 

observations focused within the atmospheric boundary layer. WFIP has also shown that the magnitude 

of the improvement increases with the number of observations, as well as the area that they are spread 

over.  Further, the impact of the new observations is even larger for wind ramp events, which are 

important for grid operators.  The improvements in forecast skill found in WFIP are significant compared 

to the year-to-year  improvements of a few percent that research and operational forecasting centers 

typically find for low-level wind forecasts.  Also as a result of WFIP, large quantities of proprietary hub-

height wind speed observations were made available to NOAA, a type of observation that NOAA 

historically has had very limited access to.  One of the legacies of WFIP is that those observations will 

continue to be sent to NOAA indefinitely, assimilated into NOAA weather forecasting models, and used 

to evaluate NOAA models.  Finally, significant improvements in wind power forecasting were also found 

during WFIP by using improved forecasting models.  Since prior to WFIP improving hub-height winds had 

not been a focal point for NOAA forecasting research, this suggests that we may have just begun to 

scratch the surface, and further large improvements are yet likely to occur as a result of future wind 

energy-focused research programs.  

  



 

                   WFIP NOAA Final Report - Page 4 
 

 

 
DE-EE0003080 

1. Project Overview                         
 

Wind power is a variable power source, dependent on weather conditions. Electric grid operators keep 

the grid stable by balancing the variable amount of power produced from wind plants by increasing or 

decreasing power production from conventional generation stations, including coal and natural gas. 

Having accurate advance knowledge of when wind power will ramp up or down through accurate 

weather forecasts can lead to improvements in the efficiency of operation of these fossil fuel plants, as 

well as the entire electrical grid system, resulting in lower costs as well as lower CO2 emissions. 

Lowering the costs of integrating wind energy onto the grid can accelerate the development of wind 

energy as a growing component of the nation's energy portfolio. 

 

Private sector forecasting companies rely on NOAA’s operational weather forecasting models to provide 

the foundational wind and temperature forecasts that they use to make power forecasts for the energy 

industry.  In some cases these company’s products consist of statistical post-processing techniques 

applied to remove biases and reduce errors in NOAA’s wind forecasts, and in other cases the companies 

use NOAA’s forecasts to provide the initial and boundary conditions for computer forecast models that 

the companies themselves run over smaller regional domains.  In either case, improvements in the 

accuracy of NOAA’s wind forecasts will result in more skillful power prediction products that private 

forecasting companies provide to the energy industry.  

1.1 Goals and Key Tasks 

 
WFIP was a DOE sponsored research project whose overarching goals were to improve the accuracy of 

wind energy forecasts, and to demonstrate the economic value of these improvements.  WFIP 

participants included several DOE national laboratories (National Renewable Energy Laboratory/NREL, 

Argonne National Laboratory/ANL, Pacific Northwest National Laboratory/PNNL, and Lawrence 

Livermore National Laboratory/LLNL); two NOAA research laboratories (Earth Systems Research 

Laboratory/ESRL and the Air Resources Laboratory/ARL); the NOAA National Weather Service/NWS; and 

two teams of partners from the private sector and university communities, led by AWS Truepower and 

WindLogics. 

 

Prior to WFIP, NOAA did not have a focused program to improve its foundational wind forecasts for the 

wind energy industry. WFIP offered the opportunity for NOAA to jump-start its efforts at improving 

forecast model skill for this industry, as well as the opportunity to work directly with experts in wind 

energy, thereby allowing NOAA to gain insights into the ways that NOAA models are used and a better 

understanding of the wind energy-specific problems that exist in NOAA models.  It also offered the WFIP 

private sector partners (WindLogics inc., and AWS Truepower) the opportunity to advance their own 

forecasting capabilities either through use of the improved NOAA forecasts or through their own 

forecasting systems.    
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Three final reports have been written on WFIP.  This report provides an overview of the entire project, 

including the roles and tasks of the two private sector partners, and then focuses on the research done 

within NOAA.  The other two reports, written by teams led by WindLogics and AWS Truepower, provide 

detailed analyses of the impact of WFIP from the perspective of private forecasting companies and 

electric grid balancing authorities. 

 

WFIP considered two avenues for improving wind energy forecasts.  The first was to deploy networks of 

mainly remote sensing observations while also acquiring proprietary meteorological observations from 

the wind energy industry, and for the first time assimilating these data into numerical weather 

prediction (NWP) models.  Additional observations allow for a more precise depiction of the model’s 

initial state of the atmosphere, potentially resulting in more accurate forecasts.  The intent of the WFIP 

instrumentation networks were to provide observations focused on the atmospheric boundary layer and 

above, and over a sufficiently broad area, to influence NWP forecasts out to at least 6 hours lead time.  

These observations were collected over a full year, to allow for an evaluation of seasonal differences in 

the skill of the models and the impact of the observations.   

 

A necessary key component of WFIP was to develop improved quality control procedures to ensure that 

the assimilated observations were as accurate as possible, as a few erroneous observations can easily 

negate the positive impact of many accurate observations when assimilated into a NWP model.  

Instrumentation and data quality control are discussed in detail in Section 2.  NOAA was responsible for 

managing the integration of the observational data (most of it arriving and used in real-time) from 

NOAA, the DOE labs, and the industry/university partners, and was responsible for data archival. 

 

The second avenue for improving wind energy forecasts was to improve the NWP models directly.  

Midway through the WFIP field program, NOAA/NWS upgraded its operational hourly-updated NWP 

forecast model from the Rapid Update Cycle (RUC) model to the Rapid Refresh (RAP) model.  The WFIP 

observations allowed for a quantitative determination of the improvement gained in hub-height wind 

speed forecasts with this model upgrade.  Also, NOAA/ESRL was (and continues to be) in the process of 

improving the RAP model, and also developing a higher resolution version of the RAP model, called the 

High Resolution Rapid Refresh (HRRR) model.  The WFIP observations allowed for a determination of the 

skill of the HRRR at forecasting hub-height winds through broad regions of the Midwest, and allowed the 

NWS to evaluate its NAM model skill at forecasting hub-height winds for the first time.  Due to the great 

volumes of data generated by the HRRR, raw model output from it was not publically available prior to 

WFIP.  One of the goals of WFIP was to obtain the computer infrastructure to make this data available in 

real-time to both the two private sector teams, as well as to any other party on the wind energy industry  

 

Beyond evaluating the skill of the NOAA models at forecasting hub-height winds, the WFIP observations 

also made it possible to determine shortcomings in the model’s  physical parameterization schemes 

(e.g., turbulence mixing), thereby making possible fundamental improvements in the model physics.  

The NOAA models and their improvements are discussed in Section 3, and their data assimilation 
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systems are described in Section 4.  Evaluation of the real-time model forecasting models is discussed in 

Section 5.   

 

A motivation for the instrumentation deployments and data impact study were the investigations of 

Benjamin et al (2004a, 2010), which analyzed forecast improvements to wind speed and other 

parameters through data denial experiments using NOAA operational observing systems such as 

radiosondes, aircraft, radar wind profilers, and surface mesonet. The precise determination of the 

impact of assimilation of the special WFIP observations came from similar carefully controlled data 

denial experiments, in which identical versions of the RAP model were run with and without the fully 

quality controlled observations.  Six data denial episodes were run, each 7 to 12 days long, that spanned 

all four seasons of the year.   In addition to the RAP, data denial experiments were also conducted with 

the NAM for the two winter episodes. The data denial simulations, as well as model biases, are 

discussed in Section 6.  

 

The bulk of the statistical analysis performed for WFIP was done comparing forecasts to observations at 

individual observation locations, and then averaging the statistics from the individual locations into an 

overall statistic.  These statistics are appropriate if one is interested in the skill of making a point 

forecast, for example the skill in forecasting for an individual wind plant that fits within a single model 

grid cell.  For some applications one would instead be interested in comparing spatially averaged power 

generation with spatially averaged forecast power; for example if a number of dispersed wind plants 

were feeding power into a transmission line, and the overall power flowing through that transmission 

line is the quantity of interest.  Spatially averaged forecast skill can differ from the average skill of 

individual point locations if the point locations have compensating errors, where an over-forecast at one 

point balances an under-forecast at another point.  For this reason in Section 6 we also investigate how 

model forecast skill varies with geographic spatial averaging. 

 

One of the features of energy production from a wind turbine is that the power output typically has long 

periods of time with either zero power production (for speeds below the turbine’s cut-in speed) or near 

100% of its maximum capacity production for high speeds.  The wind power production frequently 

jumps rapidly between these two extremes of near zero or near 100% power, and these jumps, referred 

to as ramp events, can be very rapid due to the wind power increasing approximately as the cube of the 

wind speed in the middle portion of the turbine’s power curve (an example of a power curve can be 

found in Fig. 5.2).  Recognizing the importance of these ramps events for grid operation, and that 

standard statistical metrics may not adequately measure the skill of NWP models at forecasting these 

important events, one of the goals of WFIP was to develop a new metric for ramp events.  Section 7 

describes a ramp tool and metric that was developed for WFIP and applied to the WFIP forecasting 

results.   

 

As part of WFIP a physical process study was carried out to investigate the relationship of hub-height 

winds on surface heat and momentum fluxes, and to evaluate the applicability of flux-dependent wind 
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profile laws at replicating the wind profiler through the wind turbine rotor layer.  Results of this analysis 

are presented in Section 8.  

 

The final major component of the WFIP analysis is an evaluation of the economic benefits that would 

have accrued from the improved accuracy of the WFIP wind power forecasts had they been used by grid 

operators.   Initial analyses were done by the two private sector partners and their collaborators, using 

models of the electric grid system.  DOE has decided to undertake additional studies to explore the 

complex interactions between wind forecasting and power system operations prior to publication of 

these results.  The initial work performed by the WFIP teams provided important insight into the 

benefits and shortcomings of various power system assumptions, market designs, and modeling tools in 

identifying costs and savings.  The desire to explore these important issues in more detail is the impetus 

for the new analysis.  Over the next year (2014-2015), DOE plans to engage with industry experts, grid 

operators and economic modelers to accurately define methodologies that provide quantification of 

total financial savings and other ancillary benefits of improved short-term wind power production 

forecasts.   

 

In summary, the core tasks of WFIP are to:  

 Disseminate the HRRR model output to the wind energy industry, including WFIP private sector 

partners. 

 Determine NOAA and private sector model skill at forecasting hub heights winds in diverse 

regions of the U.S. Midwest. 

 

 Improve the foundational operational and research NOAA forecast models. 

 Increase the number of atmospheric observations in the two study area domains.  

 

 Develop new quality control algorithms for radar wind profiler and tall tower observations. 

 

 Develop the capability to ingest and assimilate industry-provided tall tower and nacelle 

mounted anemometer observations into NOAA models. 

 

 Improve the initialization of NOAA and industry atmospheric mesoscale models. 

 Increase the accuracy of predicted wind speed and direction changes in short-term (0-6 hr) 

forecasts. 

 

 Determine the impact of assimilation of new WFIP observations (tall towers, nacelle 

anemometer winds, sodars, and wind profiing radars). 
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 Develop a ramp tool that can be used to quantify model skill at forecasting wind ramp events. 

 

 Create working relationships between NOAA and the wind energy industry that provide a two-

way flow of information, thereby accelerating improvements in wind energy forecasting. 

 

 Inform NOAA on the value of networks of boundary layer wind profiling instrumentation. 

 

 Provide critical analyses of the strengths and weaknesses of NOAA and private sector 

forecasting models, potentially leading to improved model physical parameterizations. 

 

 Investigate the ability of standard flux-profile relationships at characterizing the wind profile 

through the turbine rotor layer. 

 

 Quantify the economic impact of improved wind power forecasts. 

 

 Disseminate project results to the wind energy community, contributing to a continuous 

improvement in state-of-the-art of short-term forecasting methods. 

 

1.2 Team Partners, Two Study Areas 

 
DOE selected two teams from the private sector to collaborate with DOE and NOAA.  The first team was 

led by AWS Truepower, and included MESO Inc., Texas Tech University, the University of Oklahoma, 

North Carolina State University, ICF Inc., DOE/NREL, and the Energy Reliability Council of Texas (ERCOT). 

The second team was led by WindLogics and included South Dakota State University, DOE/NREL, and the 

Midwest Independent System Operator (MISO).  One of the differences between the two study partners 

is that WindLogics relies solely on NOAA forecast models to make its forecasts, applying machine-

learning post-processing algorithms to improve upon the raw forecasts, while AWS Truepower runs local 

region mesoscale NWP models that are initialized from NOAA forecast models. 

 

The geographical study areas proposed by these two teams were the upper Midwest (WindLogics) and 

western Texas (AWS Truepower). The locations of the two study areas and the instrumentation 

deployed or made available in each area are shown in Fig. 1.1 and Fig. 1.2, and the types and numbers of 

meteorological observing instruments in each area are also listed in Table 1.1.  Comparing the two 

model domains, the Northern Study Area (NSA) domain is larger, and has a more even distribution of 

wind plants, whereas the Southern Study Area (SSA) domain is smaller, and has a much more 

concentrated distribution of wind plants near the center of the domain.  Also, greater topographic 

variation exists in the SSA that the NSA, which can affect the relative skill of NWP forecasts in the two 

areas.  The field campaign portion of WFIP ran from August 2011 until early September 2012, although 

the tall tower network data in the SSA did not become available until November 29, 2011, which 

resulted in a slightly shorter analysis period for hub-height winds in the SSA.   
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Figure 1.1.  Geographic domain of the Northern Study Area.   Surface elevation is shown by color 
shading.  Instrument types and locations are shown, as well as the locations of the Next Era wind farms.    
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Figure 1.2. Geographic domain of the Southern Study Area.   Surface elevation is shown by color shading.  
Instrument types and locations are shown, as well as the locations of wind farms providing power to 
ERCOT.    
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Instrument NSA SSA 

915 MHz  W-P 

Radar 

7 3 

449 MHz   W-P 

Radar 

2  

Doppler Sodar 5 7 

W-P Lidar 1 2 (short 

term) 

Surface Flux 

Station 

3 3 

Surface Met 

Station  

8 63 

Tall Towers 133 51 

Nacelle winds 411  

 
Table 1.1  The types and numbers of meteorological observing instruments deployed in the two study 
domains.   W-P indicates a vertical wind profiling capability. 
 

 

 

2. WFIP Observations 
 

2.1 Instrumentation 

A suite of different type of atmospheric observing systems from NOAA, DOE national laboratories, and 

the private sector was assembled for use in WFIP, listed in Table 2.1.  These observing systems served 

two purposes.  First, they provided observations on the current state of the atmosphere (i.e., weather 

conditions) that were assimilated into the NWP models used to make wind power forecasts.  Forecasting 

wind power is an initial value problem, and the better that one can specify the initial state of the 

atmosphere the more accurate of a forecast can be made.  The second purpose of the observations was 

to validate the NWP models.  These validations answer the question that if new observations were 

collected near a wind farm, would the forecasts be more accurate in the vicinity of those same wind 

farms?  NOAA has restricted its validation analysis to use of these atmospheric observing systems.   The 

two WFIP private sector partners, WindLogics and AWS Truepower, also performed validation studies 

using actual wind plant power production data.  In this section we describe the instruments, data QC, 

geographical deployment of the instruments, data transmission protocols, and inter-comparisons of the 

different instrument types.  
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Instrument NOAA/  

ESRL 

NOAA/  

ARL 

DOE/  

PNNL 

DOE/  

ANL 

DOE/   

LLNL 

WindLogics AWS   

Truepower 

NRG-   

Leosphere 

West Texas 

A&M 

Iberdrola 

915 MHz  W-P 

Radar 

6 1  2 (1-

STI) 

  1 (TTU)    

449 MHz   W-P 

Radar 

2          

Doppler Sodar  3  3  2 4    

W-P Lidar     1     2 (short 

term) 

  

Surface Flux 

Station 

 3  3       

Surface Met 

Station  

8 1 6        56  

Tall Towers      118 35    15 15 

Nacelle winds      411     

 

Table 2.1.  List of instrument types, numbers, and providers, deployed or made available for WFIP.  One 

wind profiling (W-P) radar deployed by DOE/ANL was leased from Sonoma Technology Inc. (STI).  The 

AWS Truepower wind profiling radar was owned and operated by Texas Tech University.  

 

Wind Profiling Radars with RASS 

A network of 12 wind profiling radars (WPR’s) was assembled for WFIP. These also included Radio 

Acoustic Sounding Systems (RASS) components for measuring temperature profiles.  Two different types 

of WPR’s were used.  The first uses 915 MHz frequency microwaves (33 cm wavelength) while the 

second uses 449 MHz (67 cm wavelength) microwaves.  The 915 MHz systems (Fig. 2.1) are frequently 

referred to as “boundary layer profilers” and have a typical lowest range gate near 100m, with a 

maximum detectable signal that varies with atmospheric conditions (higher in a moist atmosphere) but 

that typically ranges from 1.5 to 4 km above ground level.  Typically two vertical sampling modes are 

interlaced in time, a 60 m high resolution mode and a coarser resolution 100m mode. Figure 2.2 displays 

a 24 hour time-height cross section of data from the Brady Texas 915 MHz WPR, showing the sudden 

onset (at 01 UTC; 18 CST) and cessation (between 14-16 UTC; 08-10 CST) of a low-level jet and its 

vertical structure, where UTC is the Universal Time Coordinate, or Greenwich Mean Time, and CST is 

Central Standard Time.  The depth of the atmosphere that the WPR was able to observe on this day was 

approximately 3km above ground level (AGL).  
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Figure 2.1.  The WFIP 915 MHz wind profiling radar at Saint James, MN.  The center enclosure contains 

the transmitter, a phased-array antennae, and a clutter-suppression screen.  The four white rectangular 

boxes are the Radio Acoustic Sounding System (RASS) loud-speakers. The gray enclosure to the right of 

the wind profiler is a co-located sodar system, and a 10m mast with surface met instrumentation is 

visible between the profiler and sodar.  The portable trailer contains the computer data acquisition 

system and communication equipment. 
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Figure 2.2.  24 hour time-height cross-section of hourly averaged winds from the 915 MHz Brady Texas 

Wind Profiling Radar.  The onset of a nocturnal low-level jet occurs at 01 UTC (18 CST), and ends between 

14-16 UTC (08-10 CST) the next morning.  

 

The second type of WPR’s are the 449 MHz systems (Fig. 2.3), which not only have a lower frequency, 

but also more powerful transmitters.  Both of these facts allow the 449 MHz WPR to observe a deeper 

layer of the atmosphere, often to 7 km AGL.  Figure 2.4 displays a 24 h time-height cross-section from 

the Buffalo ND, 449 MHz WPR.  The radar observes winds through the lowest approximately 6 km of the 

atmosphere on this day, and indicates two upper level wind maxima (red wind barbs) near 6 km above 

mean sea level (MSL) at the beginning and end of the day that would not have been observed with the 

915 MHz systems.    
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Figure 2.3.  The WFIP 449 MHz wind profiling radar located at Buffalo, ND. The four white enclosures 

house the RASS loudspeakers, and the small portable building contains the computer data acquisition 

system and communication equipment.  
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Figure 2.4.  24 hour time-height cross-section of hourly averaged winds from the 449 MHz Buffalo ND 

Wind Profiling Radar.  Two upper-level wind maxima are observed, one between 00-07 UTC (18-01 CST), 

and another between 20-23 UTC (14-17 CST).  

 

 

Both the 915 and 449 MHz wind profiling radars generally came equipped with RASS.  RASS measures 

the virtual temperature (the temperature that a completely dry parcel of air would have if it had the 

same density and pressure as a parcel of moist air) by emitting a vertically propagating acoustic signal 

from a loudspeaker near the side of the radar antennae, and tracking the speed of the acoustic signal 

with the Doppler radar beam.  Since the speed of sound depends on the temperature of the air, the 

vertical profile of virtual temperature can be measured. A time-height profile of the virtual temperature 

from the Buffalo WPR is shown in Fig. 2.5.  The height coverage of RASS for the 449 MHz systems was 

typically 1.0 km, and 0.6 km for the 915 MHz systems. RASS temperatures were measured and averaged 

over the last 5 minute period of each hour.  
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Figure 2.5.  24 hour of hourly-sampled RASS virtual temperature (color contours) and wind barb time-

height cross-section from the 449 MHz Buffalo ND Wind Profiling Radar.   

 

Sodars 

A network of 12 Doppler sodars was also assembled for WFIP.  These sodars, although of different ages 

and manufacturers, all had similar performance characteristics, providing wind speeds to a maximum 

height of 200 m AGL with either 5 or 10 m vertical resolution.  Fig. 2.6 displays a 24-hour time-height 

cross section of winds from the Reagan TX sodar.  This data shows the development of a low-level jet 

during hours 01-09 UTC (19-03 CST), and a strong wind ramp event between hours 16-17 UTC (10-11 

CST).  

 
Figure 2.6.  24 hour wind time-height cross-section from the Reagan TX sodar.  Colors indicate the wind 

speed, barbs the vector wind.    
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Lidars 

Three lidar systems were available during at least parts of the WFIP field campaign.  The first lidar 

system was a Leosphere WindCube7 system provided by DOE/PNNL, which was intended to be deployed 

for the entire year-long field campaign.  During the later stages of the field campaign, NRG-Leosphere 

also offered to donate two other lidar systems for a shorter duration campaign in the last several 

months of WFIP.  The DOE/PNNL lidar and one of the donated Leosphere lidars had similar performance 

characteristics, providing hourly averaged winds from 40 to a maximum of 200m with 20 m vertical 

resolution (Fig. 2.7).  The remaining donated lidar system was a WindCube8 system, which provided 10-

min averaged winds from 40m to a maximum of 460m with 20 m vertical resolution (Fig. 2.8).   

 

 
Figure 2.7.  24 hour wind time-height cross-section from the DOE/PNNL lidar deployed at DeSmet SD.  

Colors indicate the wind speed, barbs the vector wind.    
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Figure 2.8.  24 hour wind time-height cross-section from the Leosphere WindCube8 lidar deployed in the 

southwestern portion of the SSA domain.  Colors indicate the wind speed, barbs the vector wind.    

 

 

Tall Tower Winds 

One of the key instrumentation systems made available for WFIP were networks of anemometers 

mounted on tall towers.  The tall towers were mostly deployed by private wind industry companies, and 

provided to NOAA as part of WFIP under Non-Disclosure Agreements.  WindLogics in the NSA domain 

provided data from the greatest number of towers.  Using WFIP funding they upgraded communications 

on 35 towers which then were able to provide data to NOAA in real-time for data assimilation.  They also 

provided data from another 79 towers, but these data arrived one to two days late, and were used for 

assimilation only in the retrospective data denial experiments.  Since the locations of these towers as 

well as the data from them are proprietary, we do not provide a map of tower locations. However, the 

geographic spread of the towers largely follows the distribution of NextEra wind farms shown in the 

basemap for the NSA (Fig. 1.1).  WindLogics also contracted with South Dakota State University (SDSU) 

to provide real-time data from four tall towers that they operate in South Dakota, whose locations are 

shown in Fig. 1.1. 

 

In the Southern Study Area, ERCOT provided reliable real-time data from 34 tall towers, which became 

available for use only on November 29, 2011.  Again because the locations of these towers as well as the 

data from them are proprietary, we do not provide a map of tower locations.  The geographic spread of 

the towers is much more concentrated than for the NSA, reflecting the fact that much of ERCOT’s wind 

energy generation also comes from a very concentrated region in West Texas.  In addition, Texas Tech 

University (TTU) provided observations from their 200m tower located near Lubbock, Texas.  Also, 
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observations from a network of 15 tall towers operated by the West Texas A&M University were used, 

but were only available for the retrospective data denial simulations and not for the real-time forecasts. 

 

A final set of tall tower observations was provided by Iberdrola USA, independent of WFIP, and part of a 

longer term data sharing agreement with NOAA.  Data from 15 towers in the Midwestern U.S. were 

made available, and were used in the retrospective data denial simulations but not in real-time 

forecasts.  Of these, 14 were located near the NSA domain, with the remaining one near the SSA 

domain.  

 

Most of the tall tower data (with the exception of the TTU 200m tower) provided one or more levels of 

observations between 40 and 60m, with a few towers providing data up to 80m.  When multiple levels 

were present, all levels were used for assimilation and evaluation purposes. Using all tower levels 

available, approximately 235-250 reliable independent wind measurements were used at any given hour 

for either assimilation or evaluation purposes. All of the tall tower observations were provided as 10 

minute averages, with the exception of the ERCOT network which came as 15 min averages.  

 

Nacelle anemometers 

In the NSA, WindLogics provided nacelle anemometer winds from 411 wind turbines at 23 different 

wind farms.  These data were a small subset of the total number of wind turbine nacelle anemometers 

existent, and were selected by WindLogics to provide an adequate sample of the turbine winds across 

the entire set of wind farms providing data.  WindLogics developed and applied wind speed and wind 

direction corrections to nacelle anemometer data.  These corrections accounted for blade wash from 

the turbine on which the anemometer was mounted, but not wake effects from multiple upwind 

turbines.   

 

Surface mesonet 

In normal operations, the NOAA/ESRL RAP and HRRR models only assimilate surface mesonet 

observations from the NOAA/NWS ASOS network.  Although many other public and private networks 

exist, the data quality often is sufficiently unreliable as to lead to degraded forecast accuracy if these 

surface mesonet data are assimilated.  The NAM, however, does use these surface mesonet 

observations but only through judicious use of station reject lists. 

 

For WFIP two networks of surface mesonet data were utilized by the NOAA/ESRL RAP model.  The first 

were 6 stations deployed by DOE/PNNL in the SSA specifically for WFIP.  The second network was from 

West Texas A&M University, which operates a surface mesonet of 56 stations that overlaps the SSA.   

Data from both networks was used for evaluation and for assimilation in the retrospective data denial 

experiments with the RAP, after additional QC was applied as discussed below in section 2.3.  

 
 



 

                   WFIP NOAA Final Report - Page 21 
 

 

 
DE-EE0003080 

2.2 Site Selection and Preparation, Leases, Data Transmission and Handling 

 

Site selection and leases for all of the wind profiling radars was tasked to NOAA, with the exception of 

the DOE/ANL wind profiler deployed at Sioux City, Iowa, which was obtained by DOE/ANL, and the TTU 

wind profiler that was already running near Lubbock, Texas.  Several scouting trips were required for 

each of the two study domains to find appropriate sites. NOAA/ESRL has permission to obtain expedited 

site leases, if the site is a government owned property (federal, state, or local county, city or 

municipality) and a no-cost lease can be agreed to.   Typical sites include small airports, Forest Service or 

Bureau of Land Management property, water treatment plants, or road maintenance facilities.  In most 

cases it took 6 to 9 months from the time the site was selected to obtain the required legal signatures 

for WFIP leases. NOAA also obtained electrical power and security fencing (if necessary) for each of 

these sites.   

 

In the NSA, all of the sodars and the lidar were co-located with one of the wind profiling radars.  

WindLogics had to obtain their own separate lease for their two sodars with the same government 

entities that had agreed to the NOAA/ESRL leases.  In the SSA, three sodars were co-located with NOAA 

sites, and AWS Truepower was responsible for obtaining leases for the remaining three sodars.  

 

Site selection in the NSA was based on the concept of evenly sampling the study area domain with a 

WPR separation of approximately 200 km.  In the SSA, site selection for both of the WPR’s, the 3 

remaining sodars, and the surface met stations was guided by an AWS Truepower correlation-based 

model study.  

 

NOAA WPR data was transmitted from each site in real-time to NOAA/ESRL, normally using cell-phone 

communication.  After arrival at NOAA/ESRL, it was then run through several automated QC algorithms 

(see Section 2.3 below) and then placed onto the NOAA Meteorological Assimilation Data Ingest System 

(MADIS) data repository and assimilated into the NOAA/ESRL RAP and HRRR models.  Other data sets 

were obtained by the instrument owners (DOE labs, private sector partners), also typically using cell-

phone communication, and then transmitted to NOAA/ESRL using the internet.  

 

Several steps were taken to ensure the safety of proprietary data proved to NOAA.  First all of the data 

was stored on a dedicated WFIP server behind NOAA’s standard firewall. Second, this server has local 

access controls including Transmission Control Protocol (TCP) wrappers and a local host-based firewall.  

All traffic to/from this server is restricted by source/destination static Internet Protocol (IP) addresses 

and port numbers corresponding to the data providers. File transfer protocols for data ingest was 

limited to Secure Copy (SCP) or File Transfer Protocol-Secure Sockets Layer (FTPS), to ensure the 

confidentiality of data in transit.  In cases where data was being pushed from data providers to NOAA, 

each data provider also had a username and password that gave them the ability to log in to their home 

directory and write files. 
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2.3 Data Quality Control and Instrument Performance 

 

Wind profiling radars 

Quality control of atmospheric observations is crucial if the data are to be assimilated into numerical 

weather prediction models, as the degradation of forecast skill from the assimilation of only a few bad 

data points can outweigh the benefit of assimilation of many good data points.  In particular, radar wind 

profilers are known to sometimes suffer from large measurement errors due to a variety of causes, 

including migrating birds, ground clutter, and radio frequency interference.  For this reason, a major 

effort was undertaken to improve the quality of the radar wind profiler data prior to real-time data 

assimilation. 

 

Contamination of radar wind profiler data from nocturnal migrating birds was identified and quantified 

by Wilczak et al. (1995). Although techniques have been developed that helped reduce the level of 

contamination (Merritt, 1995), these were unable to completely remove the interference during periods 

of very dense bird migration. For this reason, data from operational wind profiling radar networks, such 

as the NOAA National Profiler Network apply additional simple quality control procedures to eliminate 

bird contaminated data based on time of day, wind direction, season, Signal-to-Noise Ratio (SNR), and 

spectral width thresholds. This procedure effectively eliminates all data that have characteristics of bird 

contamination, but can at times mistakenly flag and eliminate real atmospheric signal. 

 

A more recent technique (Lehman, 2012) utilizes a Gabor frame expansion to identify periods with bird 

contamination. The discrete Gabor frame expansion is a method for decomposing wind profiler data 

simultaneously in time and frequency, which allows for a separation of the stationary and non-

stationary signal components. A statistical filtering method can then be constructed to identify and 

remove the non-stationary, intermittent signal components from the data.   

 

As part of WFIP, Bianco et al. (2013) investigated the ability of the Gabor frame technique to identify 

and then remove bird contamination from both 915 MHz and 449 MHz wind profiler data. A different 

tuning of the Gabor scheme was found to be required for the two frequencies of profilers, as well as 

additional levels of thresholding of the moment level data. In addition, a state-of-the-art Multi-Peak 

Picking (MPP) algorithm (Griesser and Richner, 1998) was implemented in parallel with the Gabor 

processing, followed by a moment level pattern recognition scheme (Weber et al., 1993).  Almost all bird 

contamination in both the 915 and 449 MHz profilers was eliminated when the data were processed in 

this way, as shown in Fig. 2.9 using data collected and experimented with prior to the start of WFIP.  

 

Because of weak signal strength during some of the winter months, data degradation due to ground 

clutter could occur in the 449 MHz profiler data, and from both ground clutter and radio frequency 

interference (RFI) from cell-phone communication with the 915 MHz profilers.  A special WFIP real-time 

algorithm was developed and implemented midway through the field campaign for ground clutter 

interference (which bias the winds to lower wind speeds).  This algorithm identified periods of strong 

ground clutter through comparison with the 10 m anemometer winds, measured by a prop-vane at each 
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of the wind profiler sites, with the lowest several levels of WPR data.  In addition, a RFI check was 

implemented at two sites (DST and LDS) that had strong RFI.  This check was based on the vertical 

continuity of the profiler wind speeds.  The clutter and RFI QC checks are described in more detail in 

Appendix 1.    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9.  Top panel) 915-MHz wind profiler time-height cross sections of hourly winds computed by a 

standard consensus procedure, using test data for the 9th of October 2010 at Chico, California.  Periods 

with contamination from southward nocturnal migrating birds are apparent during hours 02-11 UTC. 

Bottom panel) The same data after processing by the combined Gabor, thresholding, and Weber-Wuertz 

pattern recognition scheme.  

 

In addition to Gabor processing, WFIP funding also allowed for the implementation of real-time pattern-

recognition signal processing (Weber and Wuertz, 1993).  This processing first searches for patterns in 

the sub-hourly moment level radial wind components (typically measured by the radar every few 

minutes), eliminating outliers that do not fit the local pattern. A second level of pattern recognition is 
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then also implemented on the u, v, and w component winds after the hourly averaged winds have been 

computed.  Patterns are searched within a time and height window that slides forward in time as new 

observations are acquired.  The effects of the pattern recognition processing are shown in Fig. 2.10 for 

hourly averaged winds from the WFIP Watford City, ND, 915 MHz wind profiler, where the top panel 

shows winds produced by a standard consensus algorithm, while the lower panel shows winds after the 

Weber-Wuertz pattern recognition processing.  The pattern recognition processing provides more good 

winds and erroneous values are removed, all while maintaining sharp gradients that occur in the 

atmosphere.  
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Figure 2.10.  Hourly averaged winds from the WFIP Watford City, ND 915 MHz wind profiler. Top panel: 

winds produced by a standard consensus algorithm.  Bottom panel: winds produced using the Weber-

Wuertz pattern recognition processing algorithm.  

 

RASS  

The WPR RASS systems were sometimes also affected by cell-phone induced RFI, especially in the winter 

months when the atmospheric signal is weaker.  An automated real-time algorithm was developed that 

identified RFI contaminated temperatures, based on the fact that these contaminated temperatures at 

all gates had almost identical temperatures.  The algorithm is described in more detail in Appendix 1.  

 

Sodars  

The quality of the sodar data was found to be dependent on the age of the instrument. Newer 

commercial systems generally had few data quality problems, except for occasional bad winds during 

periods surrounding rain events.  Some of the older sodar systems (up to 25 years old) also had 

persistent bad range gates, probably due to reflected acoustic signals from nearby structures, and 

questionable winds in the upper range gates where the signal became weak.  No special QC was applied 

to any of the sodar data in real-time before assimilation.  

 

Tall tower, nacelles, surface mesonet winds 

On most of the tall towers, each measurement level had two anemometers located on booms 

positioned 180 degrees apart.  This is done so that for all wind directions there will be at least one 

anemometer that is situated out of the tower’s wake.  Wind speeds measured within the wake can be 

significantly reduced from the free-stream wind speed.  The common practice in the wind energy 
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industry is to avoid waked sensors by rejecting the lower wind speed sensor when two or more 

observations are available at the same height, and the same was done for the WFIP analysis. 

 

A second problem that can occur with cup anemometers is the phenomena known as “cup over-

speeding”.  The physical mechanism underlying this phenomena is simply that cup anemometers  

respond more quickly to an accelerating wind than to a decelerating wind.   Studies of cup anemometer 

over-speeding (Kristensen, 1998, 1999) indicate that the size of the error can be large (> 10%) for poorly 

designed anemometers under highly turbulent atmospheric conditions, but with careful design can be 

reduced to within about 1% if the cup anemometer is coupled with a fast response wind vane.  We 

assume that the various manufacturer’s cup anemometers used on the tall towers were carefully chosen 

to have small over-speeding errors, and no corrections were applied.    

  

A significant data quality issue with the cup anemometer observations occurred during snow and icing 

conditions, when the cup anemometer speeds would first gradually slow down as snow or ice began to 

accumulate, eventually stop, and then slowly return to normal operation as the snow and ice melted. An 

automated algorithm was developed that searched for icing characteristics within a 1-hour sliding 

window (6 points for the 10 min averaged data, 4 points for the 15 min ERCOT data).  If the hourly mean 

wind speed was less than 1.0 ms-1, the standard deviation of the wind speed was less than 0.2 ms-1, and 

the temperature was less than 5 C, all of the observations within the hour window were eliminated. The 

window was then advanced by 10 or 15 minutes, and the process repeated.  A similar check was done 

for wind direction measurements, eliminating all points within an hour that had a standard deviation 

less than 0.01 degrees if the temperature was also less than 5 C.  The icing algorithm was only applied to 

the tower wind speeds for the two cold season data denial episodes in November and January.  Similar 

procedures were also applied to the nacelle observations.  In addition, speeds from nacelle 

anemometers  were flagged as bad whenever the difference between an individual anemometer’s 

speed and the mean speed of all the nacelle anemometers within a wind plant was greater than 2 

standard deviations of the speed of all the nacelle anemometers within the plant.   

 

Another significant problem found in a substantial fraction of the tall tower sites was the occurrence of 

large offsets in the wind directions.  An example of such an offset is shown in Fig. 2.11 (top panel), which 

displays the real-time hourly averaged wind directions for a 10 day period in June 2012 from the 29 and 

58 m levels at a tall tower location.  The black curve is the observed wind direction, and the red is from a 

RAP data denial control model simulation that does not assimilate any of the WFIP observations. The 

directions at the 29m and 58m levels in both the observations and the model agree so closely, that at 

most hours the two levels are indistinguishable. However, a large offset is present between the model 

and observations. The bottom panel of Fig. 2.11 shows the same data, but with the two observation 

levels rotated by -79.7 and -78.7 degrees.  Once these constant offsets have been applied, the observed 

and model directions come into close agreement for the entire 10 day period.  
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Figure 2.11.  10-day time series of wind directions from the RAP model (red curves) and observations 

(black curves) for two levels at 29 and 59 m.  Top panel) the black curves are from the original raw 

observations; bottom panel) the two levels of observations have been rotated by a constant offset of -

78.7 and -79.7 degrees.   

 

Although this example shows an extreme case when a direction offset correction is both obvious and 

necessary, a large spectrum of offsets was found between tall tower directions and the forecasts.  If the 

larger offsets are deemed to be instrumental error that should be corrected, the question then becomes 

what is the threshold for determining that the offset is instrumental and not a real forecast error?  

 

Figure 2.12 is an idealized schematic diagram of the wind direction histograms for two towers, which 

illustrates two characteristics that can be used to determine when a tower’s directions should be 

corrected.  The blue histogram has a relatively narrow, sharply peaked distribution, and a large bias 

offset, similar to what would occur for the direction errors shown in Fig. 2.11.  In comparison, the red 

histogram is broader, and has a smaller mean direction offset.  If the direction error reflects a model 

deficiency, it is likely due to local, sub-grid scale effects, such as topographic variations.  These forecast 

errors are then likely to change with wind direction, leading to a broader histogram, whereas an 

instrument offset will give the same error for all directions, leading to a narrower histogram.  Therefore 

the blue histogram is more likely to be due to an instrument wind vane alignment error, and that is large 
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enough that it should be corrected, while the red histogram is more likely due to a model deficiency, or 

an instrument direction error that is sufficiently small that it does not require correction.  

 

A non-dimensional measure of the width of the histogram is given by the number of observations     

that fall within a window of width 2N centered on the peak of the histogram (indicated in Fig. 2.12), 

divided by the total number of observations    in the histogram.  Dividing by the width of the window 

   removes the dependency on the choice of the window width, and then multiplying by the wind 

direction mean bias    gives the dimensionless factor    that incorporates both the histogram width 

and the magnitude of the direction error and that can be used to quantify the necessity to correct the 

error: 

   (
   

  
)  (

  

  
)                                                                       

 

 
Figure 2.12.  Idealized wind direction histograms for a tower with a large mean bias (MB) error and 

narrow distribution (blue curve), and a smaller mean direction bias with a broader distribution (red 

curve).  

 

Figure 2.13 shows the values of    for each of the tower levels in both study areas.  Two values of the 

window width are used, 11 and 21 degrees (+/- 5 and 10 degrees around the center of the histogram).  

The two curves are very similar, indicating that    to first order is independent of the choice of the 

window width.  The choice of a threshold value of    will then distinguish between those wind direction 

errors that are likely instrument errors and should be corrected (   greater than the threshold) and 

wind direction errors that could be real and are not corrected.  A value of       is shown in the 
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figure, but we have chosen         which gives approximately half of the    values greater than the 

threshold and half smaller than the threshold. 

 

The histogram of the mean direction bias of all of the towers/levels is shown in top panel of Fig. 2.14, for 

wind speeds greater than 3 ms-1, indicating a shift of the centroid of the histogram towards positive 

values.  The middle panel of Fig. 2.14 shows only those towers for which      , indicative of a model 

deficiency or an instrumentation error sufficiently small not to correct.  The bottom panel on Fig. 2.14 

shows the histogram of mean bias errors for those tower/levels with      .  The declination angle 

(the difference between magnetic and true north) varies with location, and for the northern study area 

varies between 6 and 12 degrees, while for the southern study area varies between 8 and 10 degrees.  

The peak in the distribution of the mean direction errors in the lower panel clusters around values that 

would have occurred if the declination correction was not applied to these towers, while secondary 

peaks occur near values that would result if the declination angle correction was applied with the wrong 

sign, or if it was applied twice.  

 

 
 

Figure 2.13.  The dimensionless direction error factor DF for each of the towers/levels, using both a 

window width of 11 degrees and 21 degrees, for 10 days of observations.  The horizontal dashed line 

represents a threshold for defining which towers will have their directions corrected and which will not.  
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Figure 2.14.  Histogram of the mean direction bias of all of the towers/levels, for wind speeds greater 

than 3 ms-1, for the same 10 days as Fig. 2.13.  The top panel is for all of the ~250 towers/levels, the 

middle panel is for only those that have      , and the lower panel is for those that have      . 

 

The wind direction and icing QC algorithms as well as the nacelle outlier algorithm were developed 

towards the end of the field campaign and were not applied for any of the real-time model simulations.  

However, for the data denial experiments the icing correction was applied to the tall tower and mesonet 

stations, the direction correction was applied to the tall tower and mesonet data except for the 

DOE/PNNL sites (which did not need it), and the nacelle outlier algorithm was applied.   
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Because of the occasional observation errors present in the sodar data, and occasional remaining errors 

in the WPR data, these data were further manually edited before assimilation in the retrospective data 

denial simulations, largely relying on cross-comparisons of the co-located sodar, wind profiler, surface 

met station observations, and the model forecasts.  This editing was done because it was felt that the 

remaining corrections for all three of these instrument systems could have been applied in real-time 

with additional development effort to create more sophisticated automated QC algorithms that 

combined the various observations.  

 

2.3 Instrument Inter-comparisons 

 

The accuracy of the three different remote sensing systems (WPR’s, sodars, and lidar) is investigated 

through inter-comparisons of the data from co-located systems for several different periods.  The only 

site where all three instrument types were deployed was at De Smet, SD.  Also, none of the remote 

sensors were co-located with any of the tall-towers or turbine nacelle anemometers, so only the remote 

sensors can be inter-compared. Fig. 2.15 shows time-series of real-time hourly averaged winds in the 

layer in which all three systems provide observations, between 90 and 200m.  The two lowest high-

resolution mode WPR range gates at De Smet are 138 and 196m, with a range gate spacing of 58m.  The 

five sodar and lidar levels from 100 to 200m were then averaged to correspond to the volume of 

atmosphere sampled by the WPR. The bottom panel of Fig. 2.15 shows the number of WPR, sodar, and 

lidar levels that were available at each hour.  The maximum number of levels for the sodar and lidar is 5, 

and is two for the WPR.  As can be seen, wind speeds from the three instrument systems generally 

follow one another quite well, with the exception of the WPR data being fast by 10-15% on the first day 

of the time-series, and occasional hours when one system or another is an outlier. 
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Figure 2.15  Inter-comparisons of WPR, sodar, and lidar data from the June 9-18, 2012 data denial time 

period, averaged between 100 and 200m AGL. The top panel shows the time series of wind speeds from 

these three instrument systems over the 10 day period.  The bottom panel shows the number of 

observation levels that go into each average.  The two WPR measurement levels were at 138 and 196m 

AGL.  

 

Figure 2.16  presents scatter plot inter-comparisons of the real-time WPR and sodar data for the Oct. 13-

20, 2011 data denial experiment period, for six sites that had co-located WPR’s and sodars.  The data are 

again averaged in the layer of overlapping observations for both instrument systems, nominally 90-

200m.  Good agreement between the two instrument types is found, although there is some variability 

from site to site.  In particular, a speed offset and relatively higher scatter is found at Ainsworth NE, 

which had an older sodar system.  Several large outliers were also present at Buffalo, SD. 
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Figure 2.16  Scatter plots of the real-time, hourly averaged WPR and sodar data for six sites that had co-

located systems, for the period Oct. 13-20, 2011.  

 

Figure 2.17 repeats the analysis of Fig. 2.16, but uses data after it has passed through the additional 

quality control procedures used for the retrospective data denial assimilation simulations.  The larger 

outliers have been removed, with overall better agreement between the WPR’s and sodars.  Additional 

comparisons between the WPR’s and sodars after the additional QC has been applied are shown in 

Appendix 2 for each of the 6 DD episodes.  
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Figure 2.17  Scatter plots of the hourly averaged WPR and sodar data for six sites that had co-located 

systems after additional QC was applied for the data denial experiment, for the period Oct. 13-20, 2011.  

 

 

The co-located sodars and WPR’s deployed during WFIP allows for a detailed inter-comparison of 

instrument bias at the range gates where the two instrument systems have overlapping data.  

Quantifying these biases is important to determine the confidence we can have in the accuracy of each 

sensor type when operated in a real-world operational setting.  In no cases were sodars and industry 

provided tall-towers co-located, and direct evaluation of potential biases in the tall tower data is not 

possible.  Instead, in Section 6.3 sodar, WPR, and tall tower biases with the model will be calculated, and 

then these biases will be compared to see if they are in approximate agreement.   

 

3. NOAA Models 
 

Because of the focus on short-term forecasts, the principal NOAA models used during WFIP were the 

hourly updated 13 km resolution Rapid Update Cycle (RUC), the 13 km resolution Rapid Refresh (RAP), 

and the 3 km resolution High-Resolution Rapid Refresh (HRRR) (Fig. 3.1).  In addition, because the NWS 

is developing an hourly updated version of the North American Mesoscale (NAM) model, some 

evaluation of the NAM model was also made, although using forecasts initialized only 4 times per day.  

The HRRR model in particular has a large potential for application to wind energy forecasting, as its 3 km 

grid better resolves terrain features affecting turbine-height winds, and also explicitly resolves 

atmospheric convection such as thunderstorms, which produce outflows responsible for wind ramp 

events.  
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Figure 3.1. Model domains for the 13 km Rapid Refresh (blue), 13 km RUC (red) and the 3 km HRRR 

(green). 

3.1 Rapid Update Cycle (RUC) 

The RUC forecast system was run operationally at the National Center for Environmental Prediction 

(NCEP) from 1994-2012. The RUC features a 13 km domain covering the contiguous U.S. (Fig. 3.1) and is 

distinctive in two primary aspects: its hourly assimilation cycle and its use of a hybrid isentropic–sigma 

vertical coordinate. The use of a quasi-isentropic coordinate for the analysis increment allows the 

influence of observations to be adaptively shaped by the potential temperature structure around the 

observation, while the hourly update cycle allows for a very current analysis and short-range forecast. 

Although the RUC was discontinued operationally during WFIP, a semi-operational version was 

maintained and run at NOAA’s Earth System Research Laboratory. The NWS operational RUC was used 

as a control forecast system with no assimilation of WFIP-special wind observations.    

The forecast model component of the RUC uses an updated version of the explicit mixed-phase bulk 

cloud microphysics originally described as the ‘‘level 4’’ scheme of Reisner et al. (1998) with 

modifications following Thompson et al. (2004) to parameterize the effects of moist processes. Sub-grid 
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scale convection is parameterized by the Grell-Devenyi scheme (Grell and Devenyi 2002). The land-

surface physics are parameterized by the RUC land surface model (LSM; Smirnova et al. 1997, 2000). The 

RUC LSM contains a multilevel soil model, treatment of vegetation, and a two-layer snow model, all 

operating on the same horizontal grid as the atmospheric model. The level 3.0 boundary layer scheme of 

Burk and Thompson (1989) parameterizes the turbulent mixing. The exchange coefficients regulating the 

fluxes of heat, moisture, and momentum between the land and atmosphere are prescribed by Monin–

Obukhov similarity theory, specifically the three-layer scheme described in Pan et al. (1994). The 

radiative transfer in the short- and longwave spectrums are parameterized by the Rapid Radiative 

Transfer Model (RRTM; Mlawer et al. 1997). Table 3.1 summarizes the RUC model configuration. 

 

3.2 Rapid Refresh (RAP) 

The RAP serves as the National Center for Environmental Prediction's regional short-range rapidly 

updating forecast system, which provides hourly updated forecasts out to 18 hours. The RAP replaced 

the operational RUC model at NCEP in May 2012, midway through the WFIP field campaign.  The 

primary differences between the RAP and RUC include: (1) the model component of the operational RAP 

is based upon the Advanced Research Weather version of the Weather Research and Forecasting (WRF-

ARW) model (Skamarock 2008), and (2) the data assimilation component uses the 3D-variational Grid 

Statistical Interpolation scheme (GSI; Wu et al. 2002). 

 

The version of the RAP implemented for WFIP features a 13 km C-grid domain covering North America 

(Fig. 3.1). The ESRL/RAP model code used for the WFIP project was a more advanced version of the 

operational RAP and came from ESRL's real-time parallel-test developmental code at the time WFIP 

experiments began. As in operations, boundary conditions for the RAP were obtained from the previous 

cycle's forecast from the Global Forecast System (GFS) model.   

 

The RAP uses a modified version of the WRF-ARW with explicit mixed-phase bulk cloud microphysics 

originally described by Thompson et al. (2008) to parameterize the effects of moist processes. Deep sub-

grid scale convection is parameterized by the Grell 3D scheme and shallow-convective processes are 

parameterized by the Grell shallow-cumulus scheme. Land-surface physics are parameterized by the 

RUC LSM (Smirnova et al. 1997, 2000). The Mellor-Yamada-Janjic (level 2.5) boundary layer scheme 

(Janjic 2001) parameterizes the turbulent mixing. The exchange coefficients regulating the fluxes of 

heat, moisture, and momentum between the land and atmosphere are prescribed by Janjic (1994). The 

radiative transfer in the shortwave spectrum is parameterized by the Goddard scheme (Chow and 

Suarez 1994) and longwave spectrum is parameterized by the Rapid Radiative Transfer Model (RRTM; 

Mlawer et al. 1997). Table 3.2 summarizes the RAP model configuration. 

 

The real-time ESRL RAP forecasts were run out to 15 hours with output at 60 minute intervals, while 

output was stored at 15 minute intervals for the data denial simulations.   

 



 

                   WFIP NOAA Final Report - Page 37 
 

 

 
DE-EE0003080 

3.3 High Resolution Rapid Refresh (HRRR) 

The HRRR features 3 km grid spacing with a domain covering the contiguous U.S. (Fig 3.1). The HRRR is 

not yet run operationally at NCEP but is planned for implementation in 2014.  However, the HRRR is run 

in a quasi-operational 24/7 developmental mode at NOAA/ESRL and already has a wide user base, 

including NOAA Weather Forecast Offices and private sector organizations.  The primary purpose of the 

HRRR is to improve the operational capability of forecasting high-impact convective storms, which play 

an important role in the ramping of low-level winds. The version of the HRRR in development during 

WFIP did not perform additional data assimilation on the 3-km grid. The initial and boundary conditions 

were obtained by direct interpolation from the RAP. The HRRR was run hourly, out to 15 hours, within 

ESRL's high-performance computing facility.   

 

The forecast model component of the HRRR, like the RAP, uses a modified version of the WRF-ARW. 

Since most convective processes can be adequately resolved at 3-km grid scales, no deep- or shallow-

convection schemes are used. The rest of the physical processes are parameterized using the same 

schemes employed in the RAP (above). Table 3.3 summarizes the HRRR model configuration. 

 

3.4 NAM and NAM CONUSNEST 

 
The NAM serves as the National Weather Service's regional short to mid-range NWP system which 

provides forecasts out to 84 hours four times at day at 00 UTC, 06 UTC, 12 UTC, and 18 UTC.  The current 

configuration of the operational NAM was implemented in October of 2011 and is based upon the 

Nonhydrostatic Multiscale Model on the B grid (NMMB; Janjic, 2003; Janjic, 2005; Janjic and Black, 2007; 

Janjic and Gall, 2012). 

 

The version of the NAM implemented for WFIP data denial studies featured two domains (Fig. 3.2), a 

parent 12 km domain and a one-way nested 4 km domain covering the contiguous United States 

(CONUS).  The coverage of both of these domains is identical to that covered by the operational NAM.  

The NMMB model code used for the WFIP project was a more advanced version of the operational 

NMMB and came from NCEP/EMC's real-time, parallel-test developmental code at the time WFIP 

experiments began.  The general configurations of both the 12 km and 4 km domains may be found in 

Tables 3.4 and 3.5, respectively.  As in operations, boundary conditions for the 12 km parent domain 

were obtained from the previous cycle's forecast from the GFS model.  All 12 km forecasts ran out to 84 

hours and the 4 km forecasts ran out to 60 hours.  Both domains produced hourly output to 36 hours. 
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Figure 3.2. NAM Parent 12 km (black) and 4 km CONUSnest (red) computational domains used during 

WFIP.  

 

 

 

 

 

13 km RUC Description Configuration 

Points in x, y, z directions 451, 337, 51 

Microphysics parameterization Thompson et al. (2004) 

Boundary layer parameterization Modified Burk-Thompson (1989) 

Convective parameterization Grell and Devenyi (2002) 

Long/short wave radiation parameterization Mlawer et al. (1997) 

Land surface model Smirnova et al. (1997, 2000) 

Table 3.1. 13 km RUC domain configuration. 
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13 km RR/RAP Description Configuration 

Points in x, y, z directions 758, 567, 51 

Microphysics parameterization Thompson et al. (2008) 

Boundary layer parameterization Janjic (2001) 

Convective parameterization Grell 3D/Grell shallow-cumulus scheme 

Long/short wave radiation parameterization Chow and Suarez (1994)/Mlawer et al. (1997) 

Land surface model Smirnova et al. (1997, 2000b) 

Table 3.2. 13 km Rapid Refresh domain configuration. 

 

 

3 km HRRR Description Configuration 

Points in x, y, z directions 1800, 1060, 51 

Microphysics parameterization Thompson et al. (2008) 

Boundary layer parameterization Janjic (2001) 

Convective parameterization Turned off 

Long/short wave radiation parameterization Chow and Suarez (1994)/Mlawer et al. (1997) 

Land surface model Smirnova et al. (1997, 2000) 

Table 3.3. 3 km HRRR domain configuration. 

 

 

 

 

12 km NAM Parent Description Configuration 

Points in x, y, z directions 954, 835, 60 

Microphysics parameterization Ferrier et al. (2002, 2011) 

Boundary layer parameterization Janjic (2001) 

Convective parameterization Janjic (1994) 

Long/short wave radiation parameterization Iacono et al. (2008), Mlawer et al. (1997 

Land surface model Ek et al. (2003) 

Gravity wave drag parameterization Alpert (2004) 

Table 3.4. 12 km NAM domain configuration. 

 

 

 

 

 

 



 

                   WFIP NOAA Final Report - Page 40 
 

 

 
DE-EE0003080 

Table 3.5. The NAM 4 km CONUSnest domain configuration. 

 

3.5 RAP and HRRR improvements 

 
During the course of WFIP numerous improvements were made to the RAP and HRRR models, and these 

improvements were then included in the data denial experiments that were run after the end of the 

field campaign.  These improvements were the result of many different funded efforts focused on model 

development, and some occurred as a result of WFIP.  Improvements that occurred during the course of 

WFIP (incorporated during 2012) are listed in Table 3.6.  These include improvements made to the 

model physics, model numerics, data types assimilated, and data assimilation procedures, including the 

assimilation of wind profiling radar data. 

 

3.6 HPC & Data Storage Requirements 

The High Performance Computing (HPC) and data storage requirements for just the data denial 

simulation experiments can be substantial.  If the full domain output was saved for the RAP model for 

the 55 data denial experiment days, over 280 Terabytes (TB) would have been required.  Since this was 

not possible, model output was saved only over a truncated domain spanning the central U.S., reducing 

the data storage requirements to 35 TB.     

The NAM WFIP data denial simulations occupy approximately 67 Terabytes of archived disk. This 

exceptionally high disk usage reflects the retention of several very large files which have been saved to 

restart NAM and NAM CONUSnest model forecasts if necessary.  Furthermore, the addition of the 

NAM’s 4 km CONUSNEST domain leads to a substantial increase in the amount of required disk space.    

All data denial simulations, both RAP and NAM, were run on Zeus, the NOAA research and development 

high performance computing system.  Model forecast jobs used 1200 processors to run the nested 

configuration of the NAM 12 km parent and 4 km CONUSNEST domains and 196 processors for the RAP 

domain.  The GSI used 240 processors for each data assimilation step that was run for the NAM’s 12 km 

and 4 km domains.   

 

4 km CONUSnest Description Configuration 

Points in x, y, z directions 1371, 1100, 60 

Microphysics parameterization Ferrier et al. (2002, 2011) 

Boundary layer parameterization Janjic (2001) 

Convective parameterization Janjic (1994): Modified to be less active for higher 

resolution 

Long/short wave radiation parameterization Iacono et al. (2008), Mlawer et al. (1997 

Land surface model Ek et al. (2003) 

Gravity wave drag parameterization None 
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 Model Data Assimilation 

RAP 

 (13 km) 

WRFv3.3.1+  

Physics changes 

   (convection, microphysics,     

   land-surface, PBL)  

Numerics changes  

   (w damping upper boundary 

conditions,   

   5th-order vertical advection) 

MODIS land use, fractional 

3010 min shortwave radiation 

New reflectivity diagnostic 

WPR assimilation heights 

Soil adjustment,  

Temp-departure radar- 

   hydrometeor building 

Precipitable Water assim mods 

Cloud assim mods 

Tower/nacelle/sodar observations 

GLD360 lightning 

GSI merge with trunk 

HRRR  

(3 km) 

WRFv3.3.1+,  

Physics changes 

   (microphysics, land-surface, 

PBL) 

Numerics changes  

   (w damping upper boundary 

conditions,   

   5th-order vertical advection) 

MODIS land use, fractional 

3005 min shortwave radiation 

New reflectivity diagnostic 

 

 

Table 3.6.  Improvements made to the NOAA/ESRL RAP and HRRR research models in 2012. 

 
4. Data Assimilation 
 

Numerical weather prediction is an initial value problem and the atmosphere is a nonlinear, chaotic 

system which, when modeled, exhibits a strong sensitive dependence on initial conditions (Lorenz 

1963).  Therefore it is important that the best available initial conditions be used to initialize NWP 

models in order to yield the best possible forecasts.  The process in which the best available initial 

conditions are obtained is through a procedure known as data assimilation, which combines a model 
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forecast with observations to provide an estimate of the current state of the atmosphere.  This estimate, 

i.e. the analysis, is then used as the initial state from which forecasts are initialized. 

 

The hourly data assimilation of the RUC forecast system uses an older three dimensional variational 

assimilation (3Dvar) technique. The analysis framework includes ingest and preprocessing of the 

observations and the calculation of innovations [discussed in Devenyi and Benjamin (2003)]. The 

background field is the previous 1-hr RUC forecast in its native coordinate. The RUC employs a diabatic 

digital filter initialization technique (Huang and Lynch 1993; Benjamin et al. 2004b) to develop 

physically-balanced circulations associated with the latent heating inferred from radar observations and 

applies a cloud analysis, using satellite data and surface ceiling observations, to initialize an the three-

dimensional cloud field.  

Both the RAP and NAM forecast systems use the Gridpoint Statistical Interpolation system (GSI; Wu et 

al. 2002) for data assimilation.  The GSI analyzes the following variables: streamfunction, velocity 

potential, surface pressure, temperature, and normalized-relative humidity [a multivariate relation 

involving specific humidity, temperature, and pressure (Holm et al., 2002)].   

 

The GSI is a complex variational data assimilation system which is capable of assimilating a diverse set of 

observations.  Such observations include, but are not limited to, radiosondes, wind profilers, Doppler 

radar radial velocities, satellite radiances, surface observations, etc.  With the advent of WFIP the 

capability to assimilate both wind turbine nacelle and tall tower observations has been developed for 

the RAP and NAM forecast systems within the GSI framework. 

 

The implementation of the GSI system for the WFIP project was under the context of 3DVar, which 

minimizes a cost function that measures the distance to the background forecast and observations 

(Kalnay, 2003). The model analysis is then globally adjusted to all the observations available during the 

assimilation period (Talagrand, 1997).  For GSI 3DVar, the following incremental cost function is 

minimized 

 

  
 

 
[                       ]                                                                

    

Where   is a column vector of analysis increments,        .  Here superscripts ‘ ’ and ‘ ’ denote an 

analysis and forecast, respectively.  The vector  , and its constituents, has length   which corresponds to 

the total number of model gridpoints times the number of analysis variables (e.g. streamfunction, 

temperature, etc.).  Matrix   is the background error covariance matrix and is of dimension      .    is 

the (possibly nonlinear) observation operator which maps forecast variables to observations and has 

dimension      , where   corresponds to the total number of observations to be assimilated.  Finally,   

is a column vector of observation innovations and takes the form of            and has length  , 

where subscript 'obs' denotes the actual observations (e.g. nacelle wind speeds).  To find the analysis 

increment which minimizes the cost function the iterative preconditioned conjugate gradient algorithm 

of Derber and Rosati (1989) is used.   
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In the practical implementation of 3DVar the background error covariance matrix,  , must be estimated 

a priori.  The structure of this matrix is quite important, as it largely determines how the information 

from the assimilated observations is spread out into the analysis, i.e. the analysis increments (Daley, 

1991; Kalnay, 2003).  In the GSI   may be estimated using the so-called NMC method (Parrish and 

Derber, 1992) or the ensemble-analysis method (Houtekamer et al. 1996).  Both techniques follow the 

methodology of using the average of many sets of forecast differences, verifying at the same time, to 

estimate  .  Along with the estimation of  , the GSI includes additional steps to model the cross-

variable covariances using linear balance relationships via statistical regression, which allows for a 

coupling of mass and wind fields in the resulting analysis (Parrish et al., 1997; Wu et al., 2002).  Finally, 

the spatially univariate correlations are modeled using an isotropic recursive filter, which has the 

response of a Gaussian function and spreads the analysis increments to nearby gridpoints (Purser et al., 

2003). 

 

The observation error covariance matrix,  , contains instrumentation errors, representativeness errors, 

and errors associated with the observation operator,  .  In practice it is assumed that all observation 

errors are independent and uncorrelated (Lorenc, 1986; Kalnay, 2003), thus rendering   a diagonal 

matrix of error variances.  In GSI observation errors for conventional observations, e.g. nacelle winds 

and radiosondes, are specified through an external error table file which stores the observation error 

standard deviations as a function of vertical pressure level.  Observations also have a certain amount of 

self-descriptive meta-data associated with them which can yield additional information about 

observation quality.  This extra data can be used to quality control observations during the analysis 

process by adaptively inflating observation error and/or rejecting observations completely.  For 

example, observations may be rejected through a gross error test, which checks the observation against 

the background forecast, if the magnitude of the difference is too large, the observation may be 

rejected. 

 

The GSI settings and configuration used for both the RAP and NAM are described in the following 

subsections. 

 

4.1 RAP/HRRR 

The RAP data assimilation system used for WFIP is a developmental version of GSI, which includes 

updates from the operational RAPv1.  RAP-GSI assimilates all standard observations as well as WFIP-

special wind observations from towers and nacelles throughout the WFIP study region.  

 

The GSI version the RAP implemented for WFIP, as well as in operations, used the so-called “partial 

cycling” procedure.  Partial cycling for the RAP involves a twice-daily 6-hr spin-up cycle from an initial 

condition taken from a 3 hr GFS forecast, valid at 03 and 15 UTC. The 1-hr forecast from the 6th cycle is 

then injected into the regular hourly cycled system at 09 and 21 UTC. Note that for the RAP, only the 

atmosphere component uses this partial cycling technique, whereas the soil moisture and temperature 
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fields are continuously cycled. This is done so that the soil state is kept physically consistent with the 

RUC Land Surface Model (LSM) diffusion of heat and moisture. 

 

Reducing the effects of imbalances introduced during the data assimilation step is addressed with a 

diabatic digital filter. Digital filtering produces an initial atmospheric state that is balanced within the 

context of the of model's dynamics (Huang and Lynch, 1993) by filtering high-frequency noise from an 

unbalanced initial state. In hourly cycled systems, noise can accumulate with each successive cycle, so 

the use of digital filter initialization is important for the mitigation of noise (e.g. Benjamin, 2004b).  In 

the RAP, a diabatic digital filter is also used for the assimilation of radar reflectivity, where a prescribed 

latent heating is added to the model’s temperature tendency term, proportional to the radar retrieved 

strength, to help spin-up a physically consistent ageostrophic circulation associated with the 

precipitating storm-scale structures. The RAP uses a filter window length of 40 minutes, which is invoked 

at the beginning of every hourly cycle.  The RAP also includes a cloud analysis procedure, using satellite 

data and surface ceiling observations, to initialize an accurate three-dimensional cloud field. 

 

The current developmental version of the HRRR does perform data assimilation on the 3 km grid, but 

during WFIP there was no data assimilation performed and no diabatic digital filter used within the 

HRRR framework. The HRRR solely benefited from the data assimilation performed within the RAP by 

means of interpolated RAP analyses used to generate initial and boundary conditions.  

 

4.2 NAM/NDAS and CONUSnest 

The version of the NAM and NAM Data Assimilation System (NDAS ) implemented for WFIP, as well as in 

operations, also uses the partial cycling procedure.  Partial cycling for the NAM/NDAS involves using the 

atmospheric variables from a 6 hour forecast from the Global Data Assimilation System (GDAS) as the 

first guess for the atmospheric state at the beginning of the 12 hour long analysis-forecast-analysis 

window of the NDAS (Fig. 4.1).  The land states, however, are still cycled from the previous, most recent 

NDAS cycle to maintain physical consistency with the model’s Land Surface Model. 

 

The WFIP project allowed for testing and introduction of several, new experimental features within the 

NAM/NDAS.  The major additions include adding analysis-forecast steps during the NDAS for the 4 km 

CONUSnest, switching on the use of a diabatic digital filter initialization technique, and the introduction 

of the capability to assimilate special wind energy observations (nacelle and tall tower observations) into 

the NAM/NDAS system for the first time. 

 

In the current operational configuration of the NDAS, the 4 km CONUSnest domain is not cycled and is 

initialized from a downscaled/interpolated field from the 12 km parent NAM domain.   However it has 

been planned to add the 4 km CONUSNEST to the NDAS assimilation procedure (e.g. Fig. 4.1).  In this 

configuration the 4 km CONUSNEST would go through an assimilation cycling procedure just as the 12 

km parent domain does, thus allowing the initial conditions for the CONUSNEST forecast to be more 

consistent with the its spatial resolution.   NCEP/EMC recognized that the WFIP project was a good 
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opportunity to implement such a capability for testing and a substantial effort was invested in adding 

this feature.  As a result of this work, this feature has also been included in a development version of an 

hourly-updated version of the NAM/NDAS. 

 

The issue of initialization and reducing the effects of imbalances introduced during the data assimilation 

step has been a longstanding challenge in NWP (e.g. Daley, 1991).  In the operational version of the 

NDAS extra divergence damping is applied to mitigate the accumulation of excessive noise (i.e. from 

TM12-TM03 in Fig. 4.1), where TMXX is the model initialization time minus XX hours.  However, 

alternate initialization techniques also exist which accelerate the model adjustment process, such as 

digital filtering, which produces an initial atmospheric state that is balanced within the context of the of 

model's dynamics (Huang and Lynch, 1993). Furthermore the use of digital filter initialization has also 

been considered a necessity for the mitigation of noise in the implementation of hourly, rapidly 

updating forecast models (e.g. Benjamin, 2004b), something which is being actively pursued for the 

NAM.  In the WFIP version of the NAM/NDAS system a diabatic digital filter (Lynch et al., 1997) was 

applied immediately after each analysis, for both domains, using a filter window length of 40 minutes. 

 

Finally, the development of the ability to assimilate nacelle and tall tower observations from the wind 

energy community is another benefit from the WFIP project.  Given the availability of these new wind 

energy data sets, the WFIP project should help accelerate the ingest of these observation types into the 

operational RAP and NAM/NDAS. 

4.3 Additional Observational Data Processing 

NCEP operational observation processing was used for encoding the profiler, SODAR, and RASS data into 

the file format used by the GSI assimilation system, known as prepBUFR (prepared Binary Universal 

Form for the Representation of meteorological data).  During the encoding process, NCEP's profiler 

complex quality control algorithm was applied to both the profiler and sodar observations, which is 

based upon observation differences from GDAS forecasts (e.g. Gandin, 1988).   

 

Once these observations were encoded into prepBUFR, the new prepBUFR files containing all 

conventional observations in addition to the special WFIP profiler, SODAR, and RASS observations were 

transmitted to ESRL for the inclusion of nacelle and tall tower observations.  These prepBUFR files were 

then used for assimilation within the NAM and RAP forecast systems. 

 

Finally, given the high density of nacelle data and the fact that each nacelle anemometer is mounted 

directly behind rotating turbine blades, an averaging method was necessary to create a more robust 

estimate prior to assimilation. The method chosen was a three step approach: (1) a mean of all nacelle 

observations was taken for every 30x30 km2 region, (2) all nacelle observations which deviated from the 

mean by more than two standard deviations were excluded, (3) the remaining nacelle observations 

were again averaged to get a single estimate within the region. This method generally excluded about 

10% of the nacelle observations and reduced the amount of single nacelle observations from about 300 

to about 18 averaged observations. 
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4.4 GSI 3DVar parameter settings 

 The WFIP version of the GSI was implemented for both the RAP and NAM in a manner which closely 
mimicked that used in operations.  In particular, the GSI data assimilation system eliminates 
observations based upon the following gross error test:  
 

 |              |                                           (eqn. 4.2) 

 

where “Obs” refers to a particular observation and “Background” refers to the model forecast 

equivalent of the observation, interpolated to the observation location (i.e.    ).  

 
The background error statistics,  , for the RAP are the same as those used in the operational RAP, which 
originated from the GDAS with modified recursive filter correlation lengths.  Background error statistics 
for the NAM are the same as those used in the operational NAM for cycles at TM09-TM00 (Fig. 4.1).  
These background error statistics were derived using 60 three hour forecast pairs based upon the 
method of Houtekamer et al. (1996).  At TM12, the beginning of the NDAS window (Fig. 4.1), the 
background error statistics from the GDAS system are used since the first guess forecast at this time 
corresponds to a six hour forecast from the GDAS. 
 
The observation errors for all conventional observations assimilated into the RAP and NAM in WFIP 
were set to be identical to the errors used in the operational versions of those models, with the 
exception that the WFIP profiler and sodar observation errors were reduced, since extra quality control 
was undertaken to ensure high data quality.  The values of observation error and gross error for the 
real-time forecasts are set as: 
 

Real time runs: 

  profilers(u,v) Sodars(u,v) Towers(u,v) Nacelles (spd) Mesonet(u,v/T,q) 

Obs error 3.7-10.0 3.7-10.0 3.5 3.5 1.5/1.0 

Gross error 5.0 5.0 1.5 1.5 5.0/7.0 

Table 4.1. Real-time forecast GSI values of observation error and gross error for the assimilated WFIP 

instrumentation types. 

 

where the profiler and sodar observation errors are equal to 3.7 ms-1 up to 700 mb, then increase by 0.2 

ms-1  every 50 mb above that, up to a max value of 10.0 ms-1 .  The values of observation and gross 

errors for the data denial simulations are set as: 

 

Data denial (DD) simulations: 

 profilers(u,v) Sodars(u,v) Towers(u,v) Nacelles (spd) Mesonet(u,v/T,q) 

Obs error 2.0-5.0 2.0-5.0 1.6 1.6 1.5/1.0 

Gross error 7.0 7.0 7.0 7.0 5.0/7.0 

Table 4.2. Data denial simulation GSI values of observation error and gross error for the assimilated WFIP 

instrumentation types. 
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For the real-time forecasts the gross error test will reject profiler and sodar observations below 700mb 

when they differ from the background field by more than 5.0 x 3.7ms-1  = 18.5 ms-1 , and tower/nacelle 

observations by more than 1.5 x 3.5ms-1  = 5.25ms-1 , while for the data denial simulations the gross 

error  test will reject profiler and sodar observations when they differ from the background field by 

more than 7.0 x 2.0ms-1  = 14.0 ms-1 , and tower/nacelle observations by more than 7.0 x 1.6ms-1  = 

11.2ms-1 .   The settings for the profiler’s and sodars for both the real-time and DD simulations and for 

the tall tower/nacelles for the DD simulations are set sufficiently lax that virtually all observations are 

always accepted.  For the non-QC’d real-time tall tower/nacelle observations, the tighter parameter 

settings eliminated some observations.  

 

Finally, the time window for the observations was also modified.  The operational NAM and RAP use a 

very short time window of +- 6 minutes of the analysis time to select the observations to assimilate.  

This effectively left out a large number of WFIP field experiment observations from the analysis.  

Therefore the time window for these observations in the data denial NAM and RAP runs was expanded 

to +- 21 minutes of the analysis time to ensure successful ingest of the WFIP field experimental 

observations.   

 

 

 

Figure 4.1. NAM/NDAS data assimilation cycling diagram.  Each forecast cycle begins with a 12 hour 

analysis-forecast window during which analyses are conducted at three hour intervals (TM12, TM09, 

etc.).  TM00 refers to the forecast initialization time (e.g. 00, 06, 12, or 18 UTC).  At TM12 the first guess 

for the atmosphere is a 6 hour forecast from the GDAS.  The land states are, however, still cycled from 

the previous NAM/NDAS cycle. 
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5. Evaluation of Real-Time Forecasts 
 

5.1.  Real-time model evaluation web site 

To assist in maintaining the WFIP instrumentation in continuous working order throughout the 

year-long field campaign and in identifying potential model problems, the observations and model 

forecasts were displayed continuously on a real-time publically accessible web site, updated on a sub-

hourly basis.  The web sites for the NSA and SSA can be found at:  

 

http://wfip.esrl.noaa.gov/psd/programs/wfip/North/ 

http://wfip.esrl.noaa.gov/psd/programs/wfip/South/ 

 

An example screen from the NSA web page is shown in Fig. 5.1. Buttons on the web page allow for 

selection of seven different models, four observation types (profilers, sodars, lidar, surface met), each of 

the WPR, public sodar, and lidar sites, and each of the model initialization times. In addition, non-public 

versions of the web site were developed for both of the private sector partners that displayed the 

proprietary sodar, tall tower and nacelle observations, as well as comparisons of the various models 

with those proprietary observations.  The web sites show both vertical profile data and surface data 

time-series for 24 hour periods that are updated each hour, with the corresponding model forecasts 

displayed out to the length of the forecast made, typically 15h for the RR and HRRR models.  Also 

separate buttons for the RR and HRRR models (in orange) allow for visualization of which observations 

at the initialization hour were accepted by the model data assimilation system. The ability to peruse 

previous day’s data is maintained through the date selection tool on the web site calendar.  In the 

example shown in Fig. 5.1, the high-resolution WPR wind vector (barbs) and speed (filled color) data at 

Buffalo ND (top panel) are compared to a 15 h forecast from the ESRL RR model (lower panel) initialized 

at 00 UTC, Sept. 1, 2012. In this particular example the model is seen to have large speed discrepancies 

of up to 15 ms-1 at forecast hours 6-9.  The real-time web site was essential during WFIP for monitoring 

instrument status, allowing for engineers and technicians to rapidly respond to instrument problems 

thereby minimizing data outages.   Also, the ability to compare observations with model output in many 

cases allowed for the identification and correction of subtle problems with instruments that would not 

have been detected by examining the observations alone.  

http://wfip.esrl.noaa.gov/psd/programs/wfip/North/
http://wfip.esrl.noaa.gov/psd/programs/wfip/South/
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Figure 5.1   A screen-shot of the main page of the model/observation evaluation web page 

 

5.2.  Conversion of wind speed to power 

In order to properly evaluate the skill of an NWP model at forecasting winds for wind energy, it is 

essential to convert from wind speed to the equivalent power that a wind turbine would produce.  This 

is necessary because wind speed errors produce corresponding turbine power production errors only for 

a range of moderate wind speeds.  Errors at low speeds do not matter as the speeds are too low for the 
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turbine to produce any power, and errors at very high speeds do not matter because the turbine will be 

producing at full capacity in any case.  In addition, the wind speed is nonlinearly related to the power 

generated which can make interpretation of wind speed forecast errors difficult to translate directly into 

forecast errors in wind power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.  An IEC class 2 wind turbine power curve, which shows the expected wind power produced as 

a function of wind speed for this class of turbine.  

 

 

The conversion of wind speed to wind power follows a wind turbine’s power curve, an example of which 

is shown in Fig. 5.2 for a standard IEC Class 2 wind turbine, which is the most common type of wind 

turbine used in the U.S. Midwest.  As can be seen, this type of turbine produces only 10% of its 

maximum possible power a speed of 5 ms-1, increasing to 90% of full power near 11.5 ms-1.  The power 

curve shown in this figure has been used throughout the NOAA WFIP analysis to quantify model forecast 

errors and forecast error improvements.  

 

5.3.  Bulk error statistics: RAP and RUC models 

From the start of WFIP through April 30, 2012, the NOAA/NWS/NCEP operational hourly-updated model 

was the Rapid Update Cycle (RUC) model. This operational model did not assimilate any of the special 

WFIP observations.  Basic MAE bulk-statistics comparisons of the NCEP/RUC model with the ESRL/RAP 

model are shown in Fig. 5.3 for the vector wind evaluated using the 39 real-time tall towers in the NSA.  

Since the NCEP/RUC model did not assimilate in the new observations while the research ESRL/RAP 

model did, the improvement in forecast skill of the ESRL/RAP over the NCEP/RUC combines fundamental 

model improvements of the RAP over the RUC, as well as the impacts of assimilation of the WFIP data.  

Because the real-time observations were not quality controlled to the same level as in the DD 

90% 

10% 
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simulations, the contribution to the improvement from assimilation of the new observations in these 

real-time evaluations may be reduced accordingly.  The fundamental model improvements of the RAP 

over the RUC are the result of many years of research and development that preceded WFIP, and also 

reflect a few changes that were made as a result of WFIP. The percent improvement of the ESRL/RAP 

over the NCEP RUC is quite significant, as large as 13% at for forecast hour 1, decreasing to 6-7% for 

forecasts hours 7-15.  

 

During this same time period of Oct – April 2012, NCEP was running a test version of the RAP 

model, which replaced the operational RUC model on May 1, 2012. Also shown in Fig.5.3 is the percent 

improvement of the ESRL/RAP over the NCEP/RAP model.  The NCEP_RAP assimilated a subset of the 

WFIP observations (one wind profiling radar and 5 sodars in the NSA; 3 sodars in the SSA; none of the 

tall towers, nacelle anemometers, or surface mesonet).  Since these observations will have added some 

skill to the NCEP_RAP,  the improvement of the ESRL_RAP relative to the NCEP_RAP model will provide a 

conservative estimate of what the improvement would have been had none of the WFIP observations 

been assimilated into the NCEP_RAP.  This improvement peaks at 3-4% at forecast hour 1 and slowly 

decreases to near 1% out to hour 15.   

 

 

 
Figure 5.3.  MAE percent improvement of the ESRL/RAP model over the NCEP/RUC model for the vector 

wind as a function of forecast length, calculated using observations from 39 real-time tall tower sites in 

the Northern Study Area (blue bars) during the first 6.5 months of the WFIP field campaign. Red bars 

indicate the same except for the ESRL/RAP over the NCEP/RAP.  

 

Figure 5.4 also shows improvements in bulk statistics for the NSA, except in this case for wind power, 

calculated by converting wind speeds from both the model and tall tower observations to power using 

the power curve shown in Fig. 5.2. The top panel shows percent improvement for the coefficient of 

determination (correlation coefficient squared), and the lower panel the percent improvement in MAE.  
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Again, large improvements are found for the improvement in the ESRL/RAP over the NCEP/RUC model, 

with more modest improvements in the ESRL/RAP versus NCEP/RAP comparison.  

 
Fig. 5.4. The same as for Fig. 5.3, except for coefficient of determination R2 and MAE percent 

improvement of wind power.   

 

Figure 5.5 shows vector wind percent improvement statistics identical to Fig. 5.3 except for the SSA, 

using observations from 15 real-time ERCOT towers.  The percent improvement in the ESRL/RAP versus 

the NCEP/RUC comparison again starts out large for short forecast lengths, then decreases to 2-3% by 

forecast lengths of 15 hours. The ESRL/RAP versus NCEP/RAP comparison shows near constant 

improvement of 2-4% at all forecast hours.  

 

The improvements in power forecasts for the SSA are shown in Fig. 5.6. The improvement for the 

coefficient of determination R2 for the ESRL/RAP to NCEP/RUC comparison is larger in the SSA than the 

NSA (Fig. 5.4), while the MAE and also the ESRL/RAP to NCEP/RAP improvements are similar in both 

domains.  
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Figure 5.5.  MAE percent improvement of the ESRL/RAP model over the NCEP/RUC model for the vector 

wind as a function of forecast length, calculated using observations from 15 real-time tall tower sites in 

the Southern Study Area (blue bars) during the first 6.5 months of the WFIP field campaign. Red bars 

indicate the same except for the ESRL/RAP over the NCEP/RAP.  

 

The overall conclusions from this analysis are that: 1) a significant improvement in the NWS operational 

hourly-updated forecasts available at the start of WFIP was technically possible from a combination of 

research forecast models and additional observations; this improvement ranged from 15-4% for 1-6 

hour hub-height wind and power forecasts of MAE and R2; and 2) the switch of the NWS operational 

forecast model from the RUC to the RAP that occurred half-way through WFIP represented a significant 

improvement in operational forecast accuracy for the wind energy community.  
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Fig. 5.6. The same as for Fig. 5.5, except for coefficient of determination R2 and MAE percent 

improvement of wind power.   

 

5.4.  Bulk Error Statistics: ERSL RAP and HRRR 

Next we show comparisons of the real-time ESRL RAP and HRRR models.  These models are very similar, 

with the most significant differences being the higher 3 km resolution of the HRRR compared to the 13 

km resolution of the RAP, and the fact that the HRRR uses only an explicit convection parameterization 

scheme.  The ESRL/RAP assimilated the special real-time WFIP observations, and since the HRRR was 

initialized off of the ESRL/RAP, it was impacted by the same new observations.  Standard RMSE bulk 

statistics are computed for the NSA and SSA using the real-time tall tower data that were available, and 

tend to show in general lower skill by up to 4-6% for the HRRR than for the RAP for most forecast hours 

(Fig. 5.7).  Similar reductions in HRRR skill of 2-6% were found for MAE, RMSE, and R2 for the scalar wind 

speed (not shown).   
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A reduction in bulk statistics forecast skill for a higher resolution model is often found in weather 

forecasting analysis, and can be explained by the fact that although the higher resolution HRRR model 

can more realistically simulate thunderstorms and other small scale convective atmospheric weather 

systems, small misplacements of these features in time or space will result in worse point evaluations of 

statistical skill than when a smoothly varying forecast from a coarse resolution model is used (e.g. Rife et 

al., 2004).   Therefore one must exercise caution when comparing high resolution forecasts to 

comparatively lower resolution forecasts when using traditional metrics (e.g. RMSE).  An approach to 

address this issue has very recently been introduced via a neighborhood approach and adopting 

probabilistic approaches to forecast verification at observing sites (Mittermaier, 2013).  Such a forecast 

verification approach may be an interesting technique worth investigating in a future study. Finally, we 

note that although the bulk statistics do not show improvement from the HRRR relative to the RAP, the 

ramp statistics analysis contained in the WindLogics WFIP final report shows that the HRRR provides 

additional value over the RAP in predicting the frequency of ramp events.  

 

 
Figure 5.7.  RMSE improvement of the vector wind for the HRRR model over the ESRL/RAP model, for the 

NSA from 15 Oct. 2011 – 30 Apr. 2012 (top panel), and the SSA from 29 Nov. 2011 – 30 Apr, 2012 

(bottom panel), as a function of forecast length.  
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6. Data Denial Simulations 
 

One of the primary goals of WFIP was to determine the impact of the special WFIP observations on 

model forecast skill of turbine hub-height winds.  Isolating the impact of the new observations required 

carefully controlled data denial simulations, where the identical numerical weather prediction model 

was run twice: first a control run that assimilated only the routinely available observations, and second, 

an experimental run that assimilated both the routine and the special WFIP observations.  Differences in 

forecast skill between these two simulations determine the impact that the special WFIP observations 

alone had on improving model forecast skill.  Both ESRL and NCEP ran data denial simulations, ESRL 

using the RAP model and NCEP using the NAM and NAM CONUSnest.   The ESRL HRRR model did not 

have its own data assimilation system, but was initialized using the ESRL RAP assimilation system at each 

hour.  Therefore only ESRL RAP, NAM, and NAM CONUSnest simulations are utilized in the WFIP data 

impact analysis, and not the HRRR.  

 

6.1. Observations assimilated 

 

The special data that was assimilated into the NOAA models for these experimental simulations included 

in the northern study area vector winds and RASS temperatures from 9 WPR sites, vector winds from 5 

sodars and 132 tall towers, and scalar wind speeds from 441 turbine nacelle anemometers (Table 6.1).  

In the southern study area the assimilated new observations included vector wind profiles from 3 WPR’s 

two of which also provided RASS temperature profiles, vector winds from 7 sodars and 51 tall towers, 

and for the RAP model, mesonet near-surface vector winds, temperature and humidity, and pressure 

from 62 sites.  In the NSA the nacelle scalar wind speeds were assimilated using the same technique 

used to assimilated satellite scatterometer scalar wind speeds over the ocean.  All WFIP observations 

were quality controlled as described in Section 2.3 before the data was assimilated using assimilation 

parameter settings as described in Section 4.4. 

 

 WPR vector 

winds 

WPR-RASS 

temperatures 

Sodar vector 

winds 

Tall tower 

vector 

winds 

Nacelle 

speeds 

Surface 

mesonet 

Vector 

winds, T q, p 

Northern 

Study Area 

9 9 5 132 441 0 

Southern 

Study Area 

3 2 7 51 0 62 

 

Table 6.1  Data types and quantities assimilated in the data denial simulation experiments for both the 

Northern and Southern Study Areas.  
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6.2. Data denial simulation dates 

Because of limitations in computing resources, data denial simulations were run for only a limited subset 

of days from the WFIP field campaign. The intent in selecting these days was to get a distribution 

through all four seasons of the year, and also to select days that were of meteorological interest to the 

private sector partners in both the Northern and Southern Study Areas.  Six separate data denial 

episodes were chosen, ranging in length from 7 to 12 days, for a total of 55 days (Table 6.2).  These 

episodes were selected based on the presence of ramp events in the observations and forecasts, the 

occurrence of challenges to grid operators from wind power variations, and the availability of the special 

WFIP observations (i.e., if possible avoiding periods when instruments were off-line due to icing or other 

conditions).  

Episode 1 30 Nov – 6 Dec 2011 7 days 

Episode 2 07 Jan – 15 Jan 2012 9 days 

Episode 3 14 Apr – 25 Apr 2012 12 days 

Episode 4 09 Jun – 17 Jun 2012 9 days 

Episode 5 16 Sep – 25 Sep 2011 10 days 

Episode 6 13 Oct - 20 Oct 2011 8 days 

 

Table 6.2   Dates for six data denial studies.  

6.3. Model bias estimation  

The different types and numbers of instruments deployed during WFIP allows for a detailed 

determination of model bias.  This estimate will help inform the direction of future improvements to the 

model, highlight potential instrumental problems, and also will be useful in determining the types of 

bias-correction methods to be considered for calculating improvements in model skill from assimilating 

the observations.  Data for the bias analysis will be restricted to the 55 days used for the data denial 

simulation, as these days had observations with the highest level of data QC applied. The bias analysis 

for the most part is shown only for the data denial control runs from the ESRL RAP model, which did not 

assimilate any of the special WFIP observations, largely because the bias does not change dramatically 

between the control and experimental simulations.  However, to illustrate this point, biases for the 

control and experimental simulations are shown for the tall tower observations.   

 

Wind profiling radars 

The wind profiler biases as a function of height for each of the 6 separate DD episodes are shown in 

Fig.6.1, for all 12 sites, and then separately for the NSA and SSA.  The bias in the NSA is almost always 

positive (the model speed greater than observed), and follows a distinctive pattern with the largest bias 

of about 1.5 ms-1 occurring in the lowest levels, then decreasing in the layer between 500-1500m to 

about +0.5 ms-1.  In contrast the bias in the SSA is close to zero in all of the DD episodes except 

December. For the NSA the largest biases occur in the cold season months (Jan., Dec., and Oct.).  This 

suggests that at least part of the bias may be due to residual clutter and RFI, which tend to be worse 

during the colder winter months when the atmospheric reflectivity is weaker.  
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Figure 6.1.  RAP control simulation wind profiler radar biases (model-observation) as a function of height, 

for each of the 6 DD episodes, averaged for all 15 forecast hours.  The left panel is for all 12 WPR’s, the 

middle panel is for the 9 NSA profilers, and the right panel is for the 3 SSA WPR’s.  

 

The WPR bias dependence on forecast hour is shown in Fig. 6.2 for both the NSA and SSA.  The biases 

here are layer averages from 0-500m, and all 6 DD episodes are averaged together.  The bias in the SSA 

is slightly negative for hours 00 – 01, turning positive with a value near +0.5 ms-1 for hours 04-15.  In 

contrast, the bias for the NSA starts positive and becomes increasingly positive with each forecast hour.  

 

 
Figure 6.2.  RAP control bias calculated using the WPR observations, as a function of length of forecast, 

averaged for all 6 DD episodes and over the layer 0-500m AGL, for the NSA (orange) and SSA (green).  
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To investigate any possible diurnal variation in the bias, we plot the bias as a function of verification 

hour (0-23 UTC) in Fig. 6.3, averaging the data into the cold season (Dec. , Jan.,  and Oct.) and warm 

season (Apr., Jun., and Sept.) episodes, again averaged over the lowest 500m AGL.  For the cold season 

the biases at all forecast lengths tend to be fairly uniform across the time of day, while for the warm 

season the biases in both the NSA and SSA are reduced during the daytime hours between 16-04 UTC 

(11-23 CST).  This suggests that the presence of a deep, convective boundary layer reduces the 

magnitude of the wind speed bias.  

 
Figure 6.3.  RAP control bias using the wind profiler speed observations, as a function of forecast 

verification time (UTC), for all 6 DD experiments, averaged over the layer 0-500m AGL.  Individual curves 

show forecasts lengths of 0, 3, 6, and 12 hours. 

 

Lastly, we consider the WPR bias as a function of wind speed. The bias is computed for 3 ms-1 wind 

speed intervals (0-3 ms-1, 3-6 ms-1, etc. out to 18-21 ms-1), again averaged over 0-500m, and averaged 

over all 6 DD episodes. The bias is a very strong function of wind speed and follows the same pattern in 

the NSA and SSA, changing by 3-4 ms-1 over the range of wind speeds.  
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Figure 6.4 RAP control bias at forecast hour 00 calculated using the wind profiling radar observations, as 

a function of observed wind speed, averaged over the lowest 500m AGL and over all 6 DD episodes, for 

the NSA (orange) and SSA (green).  

 

Sodars 

The bias analysis is now repeated using the 12 sodars deployed during WFIP.  Figure 6.5 displays the 

sodar biases as a function of height for each of the 6 separate DD episodes, for all 12 sites, and then 

separately for the NSA and SSA.  The sodar bias for the NSA averages approximately -0.35 ms-1 for the 

NSA, and +0.5 ms-1 for the SSA.  The NSA bias is nearly constant with height, whereas the SSA bias is 

small at the lowest level, increases at 80m, then decreases again at 160m.  No clear seasonal pattern is 

present in either the NSA or SSA.  
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Figure 6.5.  RAP control simulation biases as a function of height, using the sodars for verification, for 

each of the 6 DD episodes, averaged for all 15 forecast hours.  The left panel is for all 12 sodars, the 

middle panel is for the 5 NSA sodars, and the right panel is for the 7 SSA sodars.  

 

Next, the sodar bias dependence on forecast length is evaluated, using the average 0-200m sodar bias 

from the 3 lowest model levels, and averaging all 6 DD episodes together (Fig. 6.6).  In both study areas 

the bias starts off at hour 00 at its most negative value, and increases with forecast length.  The NSA bias 

is small and negative for most forecast hours, while the NSA bias is significantly positive, in agreement 

with Fig. 6.5.   

 

 
Figure 6.6.  RAP control bias calculated using the sodar observations, as a function of length of forecast, 

averaged for all 6 DD episodes and over the layer 0-200m AGL, for the NSA (orange) and SSA (green).  
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The RAP-sodar bias as a function of forecast verification hour is shown in Fig. 6.7.  The data are averaged 

into the cold season (Dec. Jan. and Oct.) and warm season (Apr., Jun., and Sept.) episodes, and again are 

averaged over the lowest 200m AGL.   

 
Figure 6.7.  RAP control bias using the sodar speed observations, as a function of forecast verification 

time (UTC), for all 6 DD experiments, averaged over the layer 0-200m AGL. Individual curves show 

forecasts lengths of 0, 3, 6, and 12 hours. 

 

The RAP control bias using the sodar speed observations as a function of the observed speed is shown in 

Fig. 6.8 for the NSA and SSA.  The bias is remarkably similar in both the NSA and SSA for most speed 

bins.  Similar to the WPR bias, the sodar bias is a strong function of wind speed, being approximately +1 

ms-1 for small observed speeds, decreasing nearly linearly to near -2 ms-1 for the 15-18 ms-1 bin. The 

largest wind speed bin has a worse bias in the SSA, but there are few observed values in this speed 

range.   
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Figure 6.8 RAP control simulation wind speed bias at forecast hour 00 determined using the sodar 

observations, as a function of the observed wind speed, averaged over all 6 DD episodes, for the NSA 

(orange) and SSA (green). 

 

Tall towers 

A similar bias analysis was also carried out for the tall tower observations used during WFIP.  Figure 6.9 

displays the bias as a function of forecast length, for the NSA (orange) and SSA (green), and for the RAP 

control (solid lines) and experimental (dotted lines).  The RAP bias when using the tall tower 

observations is negative for both the NSA and SSA, but worse in the NSA.  The bias is largest at the 

initialization time, rapidly reaches a plateau from 01-12 hours, and then slightly increases in the last 

several forecast hours.  

 
Figure 6.9.  RAP bias using the tall tower observations, as a function of length of forecast, averaged for 

all 6 DD episodes, for the NSA (orange) and SSA (green), and for the control (solid lines) and experimental 

(dotted lines) simulations.  

 

The bias as a function of season is shown in Fig. 6.10 for both the NSA and SSA.  Here some seasonal 

trend is found in the NSA, with June and September having the smallest biases, while December, 

October, and especially January have the largest biases.  The SSA biases also vary considerably from 

 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

-1.2

-1

-0.8

-0.6

-0.4

-0.2

Forecast hour

B
IA

S
 (

m
 s

-1
)

SCALAR WIND BIAS - All DD weeks

 

 

NSA - CNT

NSA - EXP

SSA - CNT

SSA - EXP



 

                   WFIP NOAA Final Report - Page 64 
 

 

 
DE-EE0003080 

episode to episode, with January and December having the opposite extremes. The mostly random 

episode-to-episode variation in the bias suggests that the bias has a significant day-to-day flow-

dependent component, and that one-week averaging periods for each episode are too short for this 

variability to reach an equilibrium value.  

 

 
 

Figure 6.10.  As in Fig. 6.9, except showing the biases for individual DD episodes. The top panel is for the 

NSA, the bottom panel for the SSA. 

 

The RAP-tall tower speed control bias as a function of validation hour is shown in Fig.6.11.  Here the 

biases are simultaneously shown as a function of the validation hour and the forecast length.  The cold 

and warm season patterns are quite similar in the NSA except for an offset of less negative biases in the 

warm season.  In both the NSA and SSA the bias oscillates with a 12 hour period, with two clear maxima 

and two minima. For moderate forecast lengths (02-09 hours) the largest (most negative) biases occur 

during the nighttime (03-10 UTC; 22-05 CST) and afternoon (18-22 UTC; 13-17 UTC) hours.  In the SSA, 

during both the cold and warm seasons the bias is also large during the afternoon hours (17-22 UTC; 12-

17 UTC), and in the warm season the second period of large bias in the nighttime hours (05-08 UTC; 00-

03 CST) is also present. Also, the variation of the bias versus forecast hour verification time and length of 

forecast are broadly consistent with those found for the sodars in Fig.6.7, including more negative biases 

present at the model initialization time, and the biases being more negative in the NSA than the SSA.  

The fact that the biases are most negative at the model initialization time (especially in the NSA) 

suggests that this may not be a result of inaccurate model physical parameterizations, but may be 

related to the data assimilation procedure.  
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Figure 6.11.  RAP control speed bias calculated using the tall tower observations, as a function of 

forecast verification time (UTC, x-axis), and forecast length (y-axis), averaged for all 6 DD experiments. 

The top panels are for the NSA, bottom for the SSA, left panels for the cold season, right panels for the 

warm season.  

 

Finally, the RAP control bias using the tall tower observations is shown as a function of observed wind 

speed (Fig. 6.12), for forecast hours 00, 03 and 06.  Similar to the wind profiler and sodar derived biases, 

the bias starts out positive for small wind speeds, and decreases nearly linearly to values of -3 ms-1 at 

speeds of approximately 15-18 ms-1, after which it decreases even faster.  
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Figure 6.12 RAP control bias using the tall tower observations as a function of observed wind speed, 

averaged over all 6 DD episodes, for the NSA (top) and SSA (bottom), for three different forecast lengths. 

 

Bias evaluation synopsis 

The speed biases in the RAP control simulations have been found to be quite large, with many 

similarities and some differences across type of observation platform (WPR’s, sodars, or tall towers) and 

between the NSA and SSA.   Similarities in biases across the instrument platforms indicate the presence 

of a real bias in the model (unless all three instruments suffer from the same bias errors).  Conversely, 

differences between the biases when using the different instrument types indicate problems with one or 

more of the instrument types.  

 

The most prominent similarity found in the biases for all of the instrument platforms is a speed-

dependent bias, where the model bias becomes increasingly negative as the speed increases.  The speed 

dependent bias appears to be similar in both the NSA and SSA, and very approximately would be 

expressed as: model bias = 1.0 ms-1 -0.2* (observed speed).  

 

The wind profiling radars in the NSA have an apparent low speed bias in the lowest 500m of 

approximately 1.3 ms-1. This bias can be partitioned into an approximately 1.0 ms-1 bias for speeds 

greater than 3 ms-1, and 1.5 ms-1 for speeds less than 3 ms-1.  A low speed bias can be caused by clutter 

or RFI, and suggests that despite efforts to QC these effects, some residual errors are still present in the 

profiler observations.  

 

A comparison of the sodar and tall tower observations suggests that either the sodars have a low speed 

bias of approximately -1 ms-1 at low wind speeds and a high speed bias of +1 ms-1 at high speeds, or the 
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towers have a high speed bias of +1.0 ms-1 for low speeds and a low speed bias -1.0 ms-1 for high speeds, 

or a combination of both effects is present (with smaller magnitudes for each).  

 

Comparison of these bias estimates is of course limited by the fact that the various observations are not 

all co-located.  In particular, none of the tall tower observations are co-located with either sodars or 

WPR’s.  A precise determination of the model and instrument biases would require co-located sensors 

at many sites, as the model bias at any single grid point may not be representative of the model bias as a 

whole.   

 

6.4. Wind profiler evaluation 

 

 
Fig. 6.13.  Vertical profiles of vector wind RMSE averaged over all 12 WPR sites and all 55 DD RAP 

simulation days, at the model initialization time and three hour forecast length increments.  Red is for 

the control simulations and blue is the experimental simulations that assimilate the special observations.   

 

The RMSE of the vector winds (Fig. 6.13) for the control simulations almost always increases with height, 

perhaps because the relative paucity of upper atmosphere observations leaves the model initial fields 
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with larger errors than near the surface, where more numerous routine observations exist. The 

difference between the vector wind RMSE for the control and experimental simulations is largest at 

forecast hour 0 (the initialization time) and becomes smaller with the length of the forecast.  At forecast 

hour 0 the RMSE for the experimental simulations is smaller than the control by as much as 2.0 ms-1 at 

2000 m AGL.  This reduction in the experimental run RMSE relative to the control is less pronounced at 

lower heights, especially in the lowest 500m, which results from the model initialization also trying to fit 

other WFIP observations in this layer. At forecast hour 03, a reduction in RMSE in the experimental 

simulation exists up to 4 km AGL. 
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Fig. 6.14.  As in Fig. 6.13 for the 9 NSA sites (top set of panels) and 3 SSA sites (bottom set of panels).   

 

Vertical profiles of RMSE for the NSA and SSA are shown separately in Fig. 6.14.  In general the behavior 

of the two domains is qualitatively similar, although the RMSE is somewhat larger in the NSA than the 

SSA.  

 

RMSE vertically averaged over the lowest 2 km AGL and over the 55 DD episode days is shown in Fig. 

6.15 again for the control (red) and experimental (blue) simulations, for both the vector wind (top 4 

panels) and scalar wind speed (bottom 4 panels).  The MAE difference between the control and 

experimental simulations is shown by the black curves, with 95% confidence intervals indicated.  Error 

bars represent the 95% confidence intervals defined as (+/- 1.96   √   ), where n’ is the effective 

number of samples determined from the one-sample time-lagged autocorrelation r1, with 

 

    
      

      
 

The improvement is largest at the initialization time, becoming insignificant beyond forecast hours 8-9, 

and is larger for the vector wind than for the scalar wind speed, indicating an improvement in wind 

direction exists as well as speed.   

 



 

                   WFIP NOAA Final Report - Page 70 
 

 

 
DE-EE0003080 

WPR

s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.15. Wind profiling radar layer averaged (0-2000m AGL) RMSE, averaged for the 6 control DD 

episode simulations (red) and the experimental DD simulations (blue). Top 4 panels are vector wind, and 

bottom 4 panels are scalar wind speed.  Left panels are average of 9 NSA profilers; right panels average 

of 3 SSA profilers. Panels with black curves show difference between control and experimental simulation 

RMSE’s in the corresponding panel above, and error bars indicate 95% confidence intervals.  
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6.5. Sodar evaluation. 

The improvement in RMSE between the experimental and control DD simulations evaluated using the 

sodar observations in the lowest 200m is shown in Fig. 6.16.  The sodar data was interpolated to the 

exact heights of the 3 model levels below 200m (approximately 30m, 80m, and 180m), RMSE’s were 

calculated at each of these levels, and then averaged.  The magnitudes of the sodar RMSE control run 

values at hour 00 and hour 06 from Fig. 6.16 compare favorably with those from the wind profilers 

lowest range gate (Fig. 6.13).  In the SSA the sodar and profiler RMSE are nearly identical (both 

approximately 2.7 ms-1 at hour 00 and 3.3 ms-1  at hour 06), while in the NSA the wind profiler values 

(3.2 and 3.6 ms-1  at hours 00 and 06) are slightly larger than those for the sodars (2.7 and 3.3 ms-1).  We 

interpret this to mean that the first range gates of the wind profilers in the NSA had somewhat lower 

accuracy than the sodars, while in the south the two had very similar accuracies.  We also note that the 

control simulation has lower accuracy in the SSA than the NSA, especially for forecast lengths greater 

than 3 hours.  
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Figure 6.16. The same as Fig. 6.15 except using sodar observations, with the layer average between 0-

200m.  
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6.6. Tall tower evaluation  

Next the tall tower data sets are used to evaluate the impact of assimilation of the new WFIP 

observations on the ESRL RAP forecasts.  Private forecasting companies almost always apply some type 

of bias correction to their wind power forecasts, some of which can be quite complicated, such as 

machine learning algorithms.  We do not want to duplicate the complex bias correction schemes that 

the private forecasting sector has developed, but to first order want to understand if the improvement 

from the assimilation of the WFIP observations is dependent on the choice of the bias correction 

scheme.  To this end we first investigate the dependence of the improvement on several simple types of 

bias correction schemes.  We then investigate how the forecast improvement depends on forecast 

length, season, forecast verification time, and wind speed, for both the NSA and SSA.  We also 

investigate how the forecast improvement varies in time hour-by-hour in one of the DD simulations, and 

evaluate the data’s impact on rare large errors.  Finally we investigate the sensitivity of the results to the 

geographic position of towers, checking if tower sites far from the main body of the WPR’s, sodars, and 

other tall towers have less skill.  

 

6.6.1. Bias correction sensitivity 

Three different bias-correction methods are evaluated, where in all cases the corrected forecast is the 

raw forecast minus a calculated bias.  The first bias is simply the average wind speed calculated 

independently for each of the 15 forecast hours over an entire DD simulation at each tower, minus the 

observed wind speeds at the same times, referred to as the mean bias correction.  The second method 

takes the additional step of calculating separate biases for each hour of the diurnal cycle, again 

separately for each of the 15 forecast hours.  The third method separates the biases according to wind 

speed, using binned intervals of 3ms-1, again separately for each of the 15 forecast hours.  After the 

forecasts are corrected for the speed bias, the speeds are then converted into power forecasts as 

described in Section 5.2, using a standard turbine power curve.  
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Figure 6.17.  MAE and R2 percent improvement of the experimental RAP simulation assimilating the 

special WFIP observations over a control that does assimilate the WFIP observations, for no bias 

correction, and the mean, diurnal, and speed dependent bias corrections.  The calculations are done 

using the 55 DD episode days, northern and southern study areas combined.  

 

Although the choice of bias correction method can have a significant impact on forecast skill, the various 

methods have a much smaller impact on the relative improvement of the experimental simulations over 

the controls, as the same technique is applied to both.  This is seen in Fig. 6.17, which shows percent 

improvement for MAE and R2 for the average of all 6 DD episodes and the NSA and SSA combined. For 

MAE, at the initialization time (forecast hour 00), using no bias correction leads to a slightly smaller 

improvement, but at all other forecast hours the MAE differences are negligible.  A greater dependence 

on bias correction method is found for R2, with somewhat smaller improvements found for the diurnal 

cycle and speed bias corrections.  We have chosen to use the simple mean bias correction for the 

remainder of the analysis, knowing that it does not significantly alter the MAE improvement statistics, 

but may have some effect on the R2 statistics.  

 

6.6.2. NSA/SSA & Forecast length  

The impacts of assimilating the new WFIP observations are broken out separately for the NSA and SSA in 

figs. 6.18-20 for the vector wind and power.  Figure 6.18 shows MAE for the vector wind (top two 

panels) and power (5th and 6th panels) for the control (red curves) and experimental (blue curves) 

simulations, as a function of forecast length, averaged over all six data denial episodes, using all tall 

tower sites for verification.  For power, the MAE is expressed as a percent of the maximum wind power 

capable of being generated (the rated power).  The SSA has higher values of MAE (for both vector wind 

and power) than the NSA, perhaps due to more prevalent low-level jets, the presence of complex terrain 
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(many of the plants are on mesa tops), and possibly more frequent convection.  As seen previously when 

using the radar wind profilers and sodars for verification (Figs. 6.15 and 6.16), the MAE reduction for the 

experimental simulations is largest at the initialization time and this reduction becomes smaller at 

longer forecast hours. The MAE difference between the control and experimental simulations is shown 

by the black curves, with 95% confidence intervals indicated.  The MAE difference at the model 

initialization time (hour 00) is similar between the NSA and SSA for both the vector wind and power, but 

stays positive at a statistically significant level for longer time in the NSA. For power, the positive 

improvement is statistically significant through forecast hour 07 for the NSA, and though forecast hour 

03 for the SSA.   

 

 

Figure 6.19 expresses the increase in vector wind forecast skill as an MAE percent improvement.  The 

MAE improvement at the initialization time is large in both areas (16% in the NSA and 14% in the SSA), 

reflecting the degree to which the GSI data assimilation scheme is able to better fit the tower 

observations. The improvement then decreases fairly rapidly in the next few forecast hours, reaching an 

approximately 3% improvement at forecast hour 06 in the NSA. The percent improvement is larger in 

the NSA than the SSA at all forecast hours.  The greater magnitude and longer duration of the positive 

improvement in the NSA is likely due to the fact that there were more observations assimilated in the 

NSA, and they spanned a larger geographic footprint than in the SSA.  
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Figure 6.18  RAP tall tower-derived RMSE, averaged for the 6 control DD episode simulations (red) and 

the experimental DD simulations (blue). Top 4 panels are for vector wind, and bottom 4 panels are for 

power.  Left panels are for the 9 NSA and right panels are for the SSA. Panels with black curves show 

difference between control and experimental simulation RMSE’s in the corresponding panel above, and 

error bars indicate 95% confidence intervals. 
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Figure 6.19.  MAE percent improvement for the vector wind, for the NSA (orange curve) and SSA 

(green curve) for all 55 DD episode days.  

 

Figure 6.20 shows the percent improvement for power, again for the NSA and SSA, and for both MAE 

and R2.  The MAE improvement for the power looks qualitatively similar to that for the vector wind, with 

larger improvements in the NSA than SSA.  For R2 the improvement is more similar in the two areas, with 

a larger improvement falling in either the NSA or the SSA depending on the forecast hour.  

 

 
Figure 6.20.  The same as Fig. 6.19 except for power. 

 

6.6.3. Seasonal variation 

Since the various DD episodes were chosen to sample all seasons of the year, breaking out the percent 

improvement for each DD episode provides a seasonal analysis.  The percent improvement of the vector 

wind MAE is shown in Fig. 6.21, with cooler colors for the winter months and progressively warmer 

colors for succeeding months ending with magenta for October.    
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In the NSA the improvement is largest for the two autumn months (September and October) with 

significant improvement lasting out to forecast hour 15.  December, January, April, and June have 

considerably lower MAE improvement for forecast hours beyond hour 04. In the SSA October again 

starts out as one of the best months of forecast improvement, but that early improvement is lost for 

forecast hours beyond hour 05.  Overall it is difficult to identify any particular season of the year that 

has clearly superior forecast improvement in both the NSA and SSA for the entire range of forecast 

hours. 

 

 

 

 
Figure 6.21  MAE precent improvement in the vector wind broken out by DD episode, for all 55 

DD episode days, for the NSA (top panel) and SSA (bottom panel).  

 

The seasonal variation in MAE and R2 for power is shown in Fig. 6.22 for the NSA and SSA. For the NSA 

September and October again show relatively greater MAE improvements, while January and notably 

June show the worst improvement. The SSA is almost the mirror image of the NSA, with October the 

worst month, while June is the best, especially for later forecast hours.  Evidently the DD episodes are of 

short enough duration that the individual DD episode statistics are heavily influenced by particular 

meteorologcial events that occur.  Further analysis is required to better understand the variation form 

one DD episode to another and to characterize the meteorological events that influence them.     
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Figure 6.22.  The same as Fig. 6.21 except for power, and for both MAE and R2.  

 

 

6.6.4. Validation hour sensitivity  

Next the diurnal variation of forecast MAE and MAE percent improvement is evaluated by visualizing 

these  both as a function of forecast validation time (0-23 UTC) as well as forecast length (0-15 hours).  

Since the diurnal cycle near the Earth’s surface is greatly different in summer and winter, and forecast 

errors may also be dependent on the surface vegetation and associated roughness lengths, we further 
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separate the data into cold season (October, December, January) and warm season (April, June and 

September) periods.   

 

Figure 6.23 shows the power MAE for the NSA, and Fig. 6.24 the power MAE for the SSA.  The y-axis is 

the forecast length starting at the initialization time at the top and forecast hour 15 on the bottom, and 

the x-axis is the time of the day that the forecast is valid for, running from 00 UTC on the left to 23 UTC 

on the right.  Both study areas fall mostly in the U.S. Central Time Zone, so UTC – 06h = local standard 

time.  Arrows showing the average times of sunrise (SR) and sunset (SS) for the center of the two study 

areas are indicated at the bottom of the figure.  The MAE is larger in the SSA than the NSA (as was also 

found in Fig. 6.16 when using the sodar observations), and larger in the warm season than the cold 

season.  Due to a variety of meteorological phenonema, including that the northern area has more 

synoptic scale systems while the southern area has more thunderstorm scale convection, more frequent 

and stronger LLJ’s, and somewhat more complex topography, ERCOT has a harder time than MISO in 

forecasting and integrating wind.  Also, in all 4 panels of Figs. 6.23 and 6.24 the MAE is smallest for 

forecasts whose verification times are during the daytime hours, especially for those forecast that were 

also initialized during the daytime hours, clearly showing the difficulty of models to forecast the stable 

boundary layer correctly 

 

Figure 6.23.  MAE of power in the NSA as a function of forecast length (y-axis) and forecast validation 

time (x-axis).  Warm colors are larger forecast errors, cold colors smaller errors.  The left panel is the cold 

season average of the October, December and January DD episodes, the right panel is the warm season 

average of the April, June and September DD episodes. The average times of sunrise (SR) and sunset (SS) 

are indicated by arrows, and the vertical black line is at sunrise.  
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Figure 6.24.  Similar to Fig. 6.23 except for the SSA power MAE.  

 

Figure 6.25 shows the improvement in power MAE for the NSA in the same format.   The improvement 

in power MAE in both seasons is obviously larger at short forecast lengths (the top of the figure) than for 

longer forecast lengths, but is also greater during the daytime hours than the nighttime hours.  For the 

warm season the larger improvements actually start 3-4 hours before sunrise, and remain until about 4 

hours before sunset.  Forecasts of 5-8 hours length that are verified during the morning to mid-

afternoon hours have some of the largest improvements. The cold season improvements are fairly 

similar to the warm season, except that the period with the largest improvement is more centered on 

the daytime hours, and the worst improvement is just before sunrise.  

 

The MAE improvement for the SSA is shown in Fig.6.26. For the cold season the largest improvements 

again occur in the daytime hours, although the difference between day and night is not as pronounced 

as in the NSA.  For the warm season, the SSA shows periods of improvement both day and night, with 

the worst improvements just before sunrise, mid-afternoon, and near sunset.  

 

 

Validation time (hours)

F
o

re
c
a

s
t 
le

n
g

th
 (

h
o

u
rs

)
South Site; MAE of Power for CNT

SSA - Cold (Oct, Dec, Jan)

 

 

00 04 08 12 16 20

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Validation time (hours)

F
o

re
c
a

s
t 
le

n
g

th
 (

h
o

u
rs

)

South Site; MAE of Power for CNT
SSA - Warm (Apr, Jun, Sep)

 

 

00 04 08 12 16 20

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

SR SR SS SS 

day day night night 



 

                   WFIP NOAA Final Report - Page 82 
 

 

 
DE-EE0003080 

Figure 6.25. Power MAE percent improvement of forecast power in the NSA as a function of forecast 

length (y-axis) and forecast validation time (x-axis).  Warm colors are a positive forecast improvement, 

cold colors negative.  The left panel is the cold season average of the October, December and January DD 

episodes, the right panel is the warm season average of the April, June and September DD episodes. The 

average times of sunrise (SR) and sunset (SS) are indicated by arrows.  

 

Figure 6.26.  Similar to Fig. 6.25 except for the SSA.  
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6.6.5. Observed power dependence 

We next investigate the dependence of the forecast improvement on the value of the observed power 

(derived from the tall tower wind data); that is, are times of low power generation improved as much as 

times of high power generation?  Figure 6.27 shows the percent MAE improvement for the NSA and SSA 

as a function of the observed power, for forecast hours 00, 03, 06, and 12.  The improvement at 

initialization time decreases as the power increases in the NSA, but this trend is less obvious in the SSA.  

Although for individual forecast hours the variation of improvement with power is rather noisy, on 

average across the three forecast hours shown, the percent improvement tends to increase slightly for 

larger power values with the possible exception of the largest observed power bin.  

 

 
Figure 6.27.  Percent improvement in MAE for four forecast lengths as a function of observed 

power, averaged for all 6 DD episodes, for the NSA (top panel) and for the SSA (bottom panel).  

6.6.6. Large forecast errors 

The dependence of the forecast error improvement on the size of the forecast error is investigated next.  

Figure 6.28 is a scatter plot of the power error in the control simulations (x-axis) versus the power error 

in the experimental simulations (y-axis) at the model initialization time, and is used to describe the 

method used. If there were no improvement the data would fall on the 1-1 line shown in magenta.  On 

average both positive (model power is greater than observed) and negative (model power is less than 

observed) model errors are reduced, as demonstrated by the best fit line shown in teal.  To determine 

the improvement for errors larger than 80% of the capacity of a hypothetical wind plant at the tall tower 

location, red dashed lines are drawn at 0.8 for both the control and experimental errors.  The MAE 

improvement for all errors greater than 0.8 is then determined by averaging the absolute differences 

between control and experimental errors for all data points that lie above and to the right of the red 

dashed lines.  Similarly, the MAE improvement for all negative errors worse than 80% is found by 
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averaging the absolute differences between control and experimental errors for all data points that lie 

below and to the left of the blue dashed lines.  The dashed lines are then moved to +/- 0.6, +/- 0.4, +/- 

0.2, and 0, and the error improvement is calculated.  The error improvement at +0.4 therefore shows 

the percentage improvement for all errors greater than 0.4, and includes the errors greater than 0.6 and 

0.8.  The MAE percentage error improvements are shown in the bar chart of the lower panel.  The 

percent improvement in the fit to the data at the initialization time is quite uniform for all power error 

thresholds, with the exception of the largest negative errors (less than -0.8) that has a smaller 

improvement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.28.  Top panel: scatter plot of the control and experimental simulation power errors at each 

tower site using 15 min data, for all 6 DD episodes, NSA and SSA combined, at forecast hour 00.  The 1:1 

line is shown in magenta, and the teal line is the best fit to the data.  Dashed red and blue lines define 

the large error thresholds, in this example at 80% power capacity.   Lower panel: MAE percent 

improvement for all errors greater than the threshold values.  Blue numbers indicate the number of 

points in each bin.  
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Because the MAE percent improvement can be rather noisy for a single forecast hour due to the small 

number of events in the largest error categories, average errors are shown over forecast hours 1-6 and 

hours 7-12 in Fig. 6.29.  Considering both forecast periods, for positive forecast errors no obvious 

dependence on forecast error is found.  For negative forecast errors, the improvement is greater for 

smaller forecast errors, and is negative for the most negative errors.  The reasons for this behavior are 

unknown. 

 

 

 

 

 
 

 

Figure 6.29.  Power MAE percent improvement for control simulation errors larger than the threshold bin 

error size, for all 6 DD episodes, NSA and SSA combined. Top panel: the average for forecast hours 1-6. 

Bottom panel: the average for forecast hours 7-12. 
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6.6.7. Effects of spatial averaging  

The statistics shown up to this point have all been averages of errors calculated at individual point 

locations. These statistics are appropriate if one is interested in the skill in forecasting for an individual 

wind plant that fits within a single model grid cell.  For some applications one would instead be 

interested in comparing spatially averaged power forecasts with spatially averaged model forecasts.  For 

example if a number of dispersed wind plants were feeding power into a transmission line and the 

overall power flowing through that transmission line is the quantity of interest.  Spatially averaged 

forecast skill can differ from the average skill of individual point locations if the point locations have 

compensating errors, where an over-forecast at one point balances an under-forecast at another point. 

 

To evaluate the effects of spatial averaging, we used forecasts and observations from the NSA, since 

that domain had tower data spread over a larger geographic area than the SSA.  First an 8x8 grid of grid 

boxes was overlain on the NSA domain, with each grid box approximately 100 km (north-south) by 150 

km (east-west).  Within each of these grid boxes all of the speed observations and forecasts for all of the 

towers within the box were averaged at each hour.  The MAE was then computed for this aggregated set 

of 64 observations and forecast locations.  The process was then repeated using a 4x4 grid, a 2x2 grid, 

and finally a averaging the observations and forecasts for all of the tower sites together (a 1x1 grid), and 

then calculating the MAE.  Since each tower site has equal weighting in both the 1x1 grid and when each 

tower site is evaluated individually, we also weighted the various grid boxes by the number of towers 

within them so that each tower again has the same weight as any other tower, even if some are 

averaged together with more neighbors than others.  This would more closely represent the actual 

aggregate power and power forecast improvement from an uneven geographical distribution of wind 

plants in the domain.  

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.30.  Spatial averaging boxes using an 8x8 grid for the NSA.  The 4x4 grid is formed by combining 

4 neighboring cells in the 8x8 grid, and the 2x2 grid by combining 16 neighboring cells.  
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The forecast power MAE’s for the various degrees of spatial averaging are shown in Fig. 6.31, with the 

solid curves for the control simulations and the dashed curves for the experimental simulations 

assimilating the new WFIP observations. The reduction in MAE provided by spatial averaging is very 

large: almost a factor of three reduction in MAE from treating each tower individually to when all towers 

are aggregated together.  Clearly, to the extent that grid operators are unencumbered by transmission 

constraints and can aggregate all wind power production together, the larger the spatial domain the 

better.   

 

The difference between the dashed lines and solid lines shows the improvement that assimilation of the 

new WFIP observations provides at the various degrees of spatial averaging.  Interestingly, although the 

MAE itself decreases continuously with more spatial averaging, the absolute improvement remains fairly 

constant for all size averages until it finally decreases in the 1x1 box when all towers are combined into a 

single aggregate.  This indicates that for moderately large aggregation areas (the 2x2 boxes are 400 km x 

600km) that forecasts can still be improved with assimilation of new observations.   

 

This last point is highlighted in Fig. 6.32, which shows the MAE speed percent improvement for the 

various degrees of aggregation.   The MAE percent improvement at hours 00, 01, and 02 increases with 

the degree of spatial averaging, and is largest for the  2x2 grid first for the first 7 forecast hours.  

 

 
 Figure 6.31.  Power MAE with different degrees of spatial averaging for all 6 DD episodes for the 

NSA.  The solid lines are for the control simulations, dashed for the experimental.  The black lines are 

with no spatial averaging, and the purple lines for the maximum spatial averaging with all tower location 

observations and forecasts aggregated into single time series.  
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Figure 6.32. MAE percent improvement of forecast power for the various degrees of spatial 

averaging, for all 6 DD episodes for the NSA.  

 

To further demonstrate the effects of spatial averaging, time series of the aggregate observed power 

(    black lines) and forecast power (   for control, shown as a red line,     for the experimental 

simulations shown as a blue line) at all of the tall tower sites for the October DD episode are shown for 

forecast hours 00 and 03 for the NSA in Fig. 6.33, and for the SSA in Fig. 6.34. The green line shows the 

instantaneous MAE percent improvement (   ), calculated as the absolute difference between the red 

and black lines minus the absolute difference between the blue and black lines, all normalized by the 

time average over the entire DD episode of the absolute difference between the red and black lines.  

 

    
|     |  |     |

〈|     |〉
 

 

 The horizontal green line shows the average     over the entire DD episode, and the black horizontal 

line is drawn at zero MAE improvement.  

 

In general, the aggregate control forecasts do a good job of matching the aggregate power at the model 

initialization time (hour 00), although significant improvements are still found by assimilating the new 

WFIP observations, as can be seen by the green curve and solid line, and as can be seen especially on 

October 20-21 (Fig. 6.33).  At forecast hour 03 the aggregate forecast errors have clearly increased in 

both the control and experimental simulations, and large positive and negative swings in the     occur, 

but a net improvement in the     is still present.  For the SSA the control and experimental forecasts do 
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not match the observations as well as in the NSA at the initialization time, and a smaller but still 

significant improvement in the experimental simulation exists compared to the control.  At forecast 

hour 03 the forecast errors have increased considerably, and the     has decreased but is still positive.  

 

 

 
Figure 6.33.  Aggregate observed power (black curve), control forecast power (red curve), experimental 

forecast power (blue curve), and instantaneous MAE percent improvement (green curve) at forecast hour 

00 (top panel) and hour 03 (bottom panel) for the October DD episode and for the NSA.  10 min observed 

powers are interpolated to 15 min intervals to match the model forecast times.  Horizontal green line 

shows the average instantaneous MAE percent improvement over the entire DD episode.  
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Figure 6.34.  The same as Fig. 6.33 except for the SSA.  

 

6.6.8. Geographic outlier sensitivity analysis 

A significant number of the tall tower observation sites were located at a considerable distance from the 

remaining WFIP observations, and thus could be considered to be “geographical outliers”.  Since one 

would expect to see a smaller impact of the bulk of the observations on a site far removed from those 

observations, a geographical outlier sensitivity analysis was done in which these far outlying stations 
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were eliminated from the percent improvement calculations.  The green rectangle and circle in Fig. 6.35 

show the restricted areas for the NSA and SSA tall tower evaluation, with any tall tower sites located 

outside of these two more restricted domains eliminated from the analysis.  In the NSA 34 sites were 

eliminated (25 % of the total) and in the SSA 14 sites (27 % of the total) were eliminated.  

 

                                               
Figure 6.35.  The two study areas with the more restricted domains shown by the green rectangle in the 

NSA and green circle in the SSA.   Tall tower sites falling outside of these two areas are eliminated in the 

geographic outlier sensitivity analysis. 

 

The results of eliminating these geographic outliers is illustrated in Fig. 6.36, where the dashed lines 

show the MAE and R2 percent improvement for the restricted domains, and the solid lines are when 

using all of the tall tower sites.  For both the NSA and SSA, for both MAE and R2, the percent 

improvement is found to mostly be greater when using the more restricted domains.  This is especially 

true for the first 4-5 forecast hours, and the increase in percent improvement is more significant in the 

SSA than the NSA.  This result demonstrates that the local density of observations influences the degree 

of forecast improvement: outlying sites where the density of observations assimilated is low have a 

smaller improvement than sites where the density of observations is greater.  
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Figure 6.36.  Percent improvement of MAE (top panel) and R2 (bottom panel) for the NSA (orange) and 

SSA (green) when using all tower observations (solid) and when using only those tall towers that fall 

within the restricted analysis domains shown in Fig. 6.35.   

 

6.7. NAM results  

6.7.1  Wind Profiler and sodar verification 

The impact of the new WFIP observations on the NWS/NCEP NAM model forecast skill was evaluated by 

comparing forecasts against WFIP profiler and SODAR observations in both the northern and southern 

study domains. The NAM/NDAS system completed data denial experiments for the two winter episodes 

only, 30 November – 6 December 2011, and 7-15 January, 2012. This was accomplished by interpolating 

the forecast to each observation location, taking the difference (forecast - observation), and then 

averaging all differences within a specified layer above ground level (AGL).  For profilers this level was 

specified to be 0-2 km AGL while SODARS were set to 0-200 m AGL due to their much shallower vertical 

sampling of the wind. 

 

Forecast verification for the NAM and CONUSnest was done using the NCEP Forecast Verification 

System.  Statistical significance testing was done using a Monte Carlo technique with 2000 samples 

(Hamill, 1999).  Any lines in the NAM/NDAS verification plots which lie outside the boxes are significant 

at the p=0.05 level.  No bias correction has been applied to the NAM or CONUSnest forecasts.  The 

control simulations for the 12 km parent and 4 km CONUSnest will be referred to as NAM and 

CONUSnest respectively.  The experimental simulations for the 12 km and 4 km domains, which 

assimilated the special WFIP observations, will be referred as NAMX and CONUSnestX. 

 



 

                   WFIP NOAA Final Report - Page 93 
 

 

 
DE-EE0003080 

Upon initial review of profiler-based RMSE statistics for both study regions and computational domains 

(Figs 6.37 and 6.38), it is apparent that the addition of WFIP observations to the NAM/NDAS system 

provides a statistically significant benefit on the wind vector forecast for the first 4 – 6 hours of the 

forecast. However the southern study region showed a more lasting positive benefit through the 

forecast period than the northern study region, depicting reduced RMSEs out to forecast hour 8, with 

results that are on the edge of significance at forecast hour 7.   

 

 
 

Figure 6.37. NAM vector wind RMSE (top) and wind speed bias (bottom) against WFIP wind profiler 

observations within the 0-2km AGL layer in the northern study region.  Statistics from the 12 km parent 

domain occupy the left panels and forecasts from the 4 km nest domain occupy the right panels.  Red 

traces are the control simulation and blue traces are the experimental simulation.  Verification covers the 

two winter data denial periods. 

Wind speed biases calculated against the profiler observations are generally not statistically significant 

(bottom row of Figs 6.37 and 6.38).  However, in general, biases for both the control and experimental 

runs are negative, meaning that the wind speed forecasts are too slow.  For the northern domain this 

bias is slightly worse in the early parts of both experimental forecasts but generally improves, relative to 
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the respective control runs, by forecast hour 5.  For the southern domain the bias is generally improved, 

i.e. closer to zero, at all forecast hours, with the exception of forecast hour 1 with the NAMX. 

 

 
 

Figure 6.38. As in Fig. 6.37 except valid for the southern WFIP study region. 

 

Figures 6.39 and 6.40 show the RMSE and bias as a function of forecast hour against SODAR 

observations for the northern and southern domains, respectively.  For the northern study area (Fig. 

6.39), both NAMX and CONUSnestX simulations show similar behavior with the profiler verification in 

terms of RMSE, except that the statistically significant portion of the impact has a shorter duration of 

about 2 hours.  A reduction in RMSE may be seen out to forecast hour 8 in the NAMX – although this is 

not statistically significant.  In the southern study area (Fig. 6.40) the interpretation of RMSE is less clear 

and the results fail to be statistically significant at nearly all times for both experiments.  The NAMX 

exhibits some degradation in the RMSE for forecast hours 1 – 3, thereafter the RMSE is better than or as 

good as the control simulation (top left panel, Fig. 6.40).  For CONUSnestX, a reduction in RMSE, relative 

to CONUSnest, is shown at forecast hours 0 and hours 3 – 7.  Impacts are otherwise neutral, with the 

only negative impact occurring towards at forecast hours 12 and 13. 
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Figure 6.39. As in Fig. 6.37 except forecasts are compared to SODAR observations in the 0-200 m AGL 

layer.  Verification is valid for the northern WFIP study domain. 

The bottom panels of Figs 6.38 and 6.39 show the bias for the control and experiment simulations 

relative to the SODAR observations. Overall, the impacts on the wind speed bias are mixed and tend to 

not be statistically significant.  For the northern study (Fig. 6.39) area bias improvements are seen for 

the first 3 hours with NAMX and up to 6 hours with CONUSnestX.  After these times both experiments 

show degradation.  In the southern study region NAMX and CONUSnestX, similar to the interpretation of 

the RMSE, have differing behaviors in bias (Fig. 6.40). The NAMX shows an overall increase in the wind 

speed bias throughout all forecast hours shown.  This brings the bias closer to zero for the early and 

later parts of the forecast period. Otherwise this increased bias has a negative to neutral impact. The 

CONUSnestX shows degradation for all forecast hours except for hours 7, 9, 13, and 14.   
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Figure 6.40. As in Fig. 6.38 except for the southern WFIP study region. 

Finally, it is worth emphasizing that the results for the bias in both study regions are generally not 

statistically significant.  In fact, this claim could likely extend to the bias associated with the profiler 

observations as well (bottom panels of Figs 6.37 and 6.38).  This could indicate that the bias amongst all 

forecasts at profiler and SODAR locations has a large variance which prohibits the inference of statistical 

significance.  While the behavior of the effect of assimilating new observations on the wind speed bias is 

not entirely clear, it was clear that the overall impact on the RMSEs was positive for both NAMX and 

CONUSnestX.  The addition of WFIP observations generally yielded statistically significant improvements 

in the first several hours of the forecast period, especially with respect to the 0-2km AGL layer at profiler 

locations. 

 

Many reasons exist which may explain the source of differences in the relative impacts of assimilating 

the WFIP observations between the northern and southern study regions.  Such reasons include; 

differing observation networks, differing geography, differing local climate, and small sample size.  

Therefore the results presented here do not necessarily suggest the superior forecast improvement of 

one study region over the other, but rather that the inclusion of the additional WFIP observations 

yielded a positive impact in short-term, low-level wind forecasts. 
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6.7.1 NAM/NDAS Conventional verification over the Plains   

Additional verification work was also done over the winter quarter data denial period to evaluate any 

potential significant results on other aspects of the forecast.  Short-range forecasts were compared to 

conventional surface and upper-air observations.  However, results from verification against upper air 

observations were largely inconclusive due to the spatially and temporally sparse nature of the United 

States upper-air network. Therefore, the focus of this brief section is with respect to the impacts of the 

assimilation of WFIP observations on surface observation verification in the WFIP study regions.  For 

simplicity, verification shown here was calculated over both the northern and southern Plains regions of 

the United States, as defined in the NCEP Forecast Verification System (Fig. 6.41). 

 

 
 

Figure 6.41. Forecast verification regions in the NCEP Forecast Verification System.  For conventional 

verification in WFIP, regions NPL and SPL were combined to form a sub-region for the Plains states. 

Verification against conventional surface observations was conducted for both NAMX and CONUSnestX 

over the entire winter quarter period for 2 m temperature, 2 m relative humidity, and 10 m wind.  

Results for 2 m relative humidity are not shown here, as the impacts were relatively neutral.  For 

temperature, the additional WFIP observations had the effect of reducing RMSEs very slightly in the 2 – 

10 hour forecast time range (~ 0.01 K, not shown) while improving biases by a statistically significant 

amount, for both NAMX and CONUSnestX, throughout the verification period (Fig. 6.42).  The 10 m wind 
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verification shows a statistically significant reduction in the RMSE for the CONUSnestX at forecast hours 

4 and 5, but also shows some degradation toward the end of the verification period.  The NAMX depicts 

similar behavior, but with a slightly smaller amplitude (Fig. 6.43).  Both CONUSnestX and NAMX show 

improved 10 m wind speed biases throughout the forecast period (Fig. 6.44) as a result of the 

assimilation of the additional WFIP observations. 

 

 
 

Figure 6.42.  NAM/NAMX and CONUSnest/CONUSnestX 2m temperature bias over the Plains.  

 



 

                   WFIP NOAA Final Report - Page 99 
 

 

 
DE-EE0003080 

 
 

Figure 6.43. NAM/NAMX and CONUSnest/CONUSnestX 10 m wind vector RMSE over the Plains. 
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Figure 6.44. NAM/NAMX and CONUSnest/CONUSnestX 10 m wind speed bias over the Plains. 

 

6.7.2 Tall tower and nacelle verification 

 

The WFIP experiment allowed for the introduction and testing of two new, unique data sets provided by 

private sector wind energy companies, nacelle anemometer and tall tower wind observations.  Until 

WFIP neither of these observations had been assimilated into the NDAS. 

 

Throughout the duration of the WFIP winter quarter data denial experiments, the NAMX assimilated a 

total of 201,171 tall tower observations and 15,429 nacelle observations.  The CONUSnestX experiment 

assimilated 201,144 tall tower observations and 15,429 nacelle observations.  The slight discrepancy 
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between the NAMX and CONUSnestX in terms of the number of assimilated tall tower observations is 

very likely due to the gross error checking algorithm within the GSI. 

 

If we look at the distribution of the innovation, or observation minus forecast, values from all analysis 

times within WFIP we see that both new observation types have a relatively Gaussian shape (see Figs 

6.45 and 6.46 for tall tower and nacelle observations, respectively).  It should also be noted that while 

these innovations provide information on the assimilation, they also provide information on short-term 

forecast errors since the background for each analysis, except at TM12, is a three hour forecast (Fig. 

4.1). 

 

 

 

Figure 6.45. Tall tower u (left) and v (right) observation innovations (observation-forecast) from all 

analysis steps during the WFIP winter quarter data denial period.  Distributions featured along the top 

are from the NAMX while distributions along the bottom row are from the CONUSnestX.  The red dotted 

lines correspond to Gaussian distributions. 
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Figure6.46. Nacelle wind speed observation innovations from all analysis steps during the WFIP winter 

quarter data denial period from the NAMX (top) and CONUSnestX (bottom).  The red dotted lines 

correspond to Gaussian distributions. 

 

The mean innovation, depicted in the lower-left of each figure, also denotes the overall mean forecast 

bias related to the assimilation of a particular observation.  The bias for the u-component of the wind 

from the tall tower observations (Fig. 6.45) is 0.49 ms-1  for the NAMX and 0.34 for the CONUSnestX, 

indicating that both models may have a tendency to under-forecast the u-component of the wind.  

However this does not necessarily indicate a direct problem with the model, as there could also be 

biases present in the observations as well, as noted in the quality control section regarding the tall 

towers.  The biases for the v-component of the winds for both NAMX and CONUSnestX are quite small, -

0.09 ms-1 and -0.06 ms-1  respectively. 
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The mean innovations for the nacelle wind speed observations both indicate positive biases for both 

NAMX (0.80 ms-1 ) and CONUSnestX (0.48 ms-1 ) experiments (Fig. 6.46).  Interestingly, the CONUSnestX 

has a slightly smaller bias for both the tall tower and the nacelle wind speeds which could suggest that 

the finer grid-spacing of the CONUSnestX allows for a more realistic representation the magnitude of the 

observed wind velocities in the wind turbine layer (eg; Rife et al., 2004).  Guidance with high-horizontal-

resolutions (<= 4 km) is already known to provide realistic and skillful representations of meso-

convective phenomena (e.g.; Weisman et al., 1997; Kain et al., 2008; Schwartz et al., 2009).  

Nonetheless, both NAMX and CONUSnestX indicate an under-forecasting bias that may be present in the 

model (e.g. wind speeds which are too slow).  This is an interesting result, considering the nacelle wind 

speed measurements are typically taken downstream of the turbine rotor blades, and thus are 

measuring a wind which has had some energy removed from it.  Recent studies have estimated that 

such measured speeds may represent a 20% reduction from the true wind speed (e.g. Drechsel et al., 

2012).  Therefore, it was logical to expect the NAMX and CONUSnestX to over-forecast high wind 

speeds, however this was not the case.  To investigate this bias the nacelle wind speeds and their 

associated innovations were decomposed into two-dimensional histograms for both NAMX and 

CONUSnestX simulations (Fig. 6.47).  As observed wind speeds increase beyond 5 ms-1 , both simulations 

tend to produce an increasing number of positive innovations.  Thus, these results suggest that the 

current forecast system has a slow speed bias as wind speeds increase beyond 5 – 8 ms-1  compared to 

the nacelle winds at the turbine level (similar to what was found for the RAP model), perhaps indicating 

an issue of representativeness with the forecast model.  More work is needed to investigate this 

hypothesis.  One such approach to investigate this potential bias is to test adding additional vertical 

levels within the model boundary layer.  Recent research has shown that increasing the vertical 

resolution within the boundary layer can improve turbine-level forecasts (Bernier and Belair, 2012).  

When superimposed with a sample from a WFIP SODAR platform, known for its high vertical resolution, 

one can see that the NAM only has a few levels which sample the wind energy generation layer at about 

80 m AGL (Fig. 6.48). 

 

Moving forward from WFIP, NCEP is actively taking the appropriate steps to ingest these observations 

from the private sector in real-time to assimilate into the operational NDAS/NAM for the improvement 

of real-time, short-range forecasts. 

 

 



 

                   WFIP NOAA Final Report - Page 104 
 

 

 
DE-EE0003080 

 

Figure 6.47. Nacelle wind speed observations and innovations depicted as a two-dimensional histogram.  

Plotted data are from all analysis steps during the WFIP winter quarter data denial period from the 

NAMX (top) and CONUSnestX (bottom). 
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Figure6.48. A comparison of the number of vertical levels from the NAM vs. the levels at which SODAR 

observations are reported at the Ainsworth, NE SODAR site. 

 

7. Ramp Tool and Metric 
 

7.1 Background 

One of the challenges in integrating weather-dependent renewable energy onto the electric grid 

comes from the high temporal variability of wind energy.  Wind energy production can vary greatly over 

short periods of time due to the inherent variability of wind speed, which is then amplified by a wind 

turbine’s power curve, which translates the wind speed into power production.  Figure 7.1 displays the 

time series of wind speed measured on a tall tower near turbine hub-height, and then the resulting wind 

power that would have been produced by a turbine when using a standard IEC2 turbine power curve 

(Fig. 5.2).  The wind power production has long periods of time with either zero power production (for 

speeds below the turbine’s cut-in speed) or near 100% of its maximum capacity production for high 

speeds.  The wind power production frequently jumps rapidly between these two extremes of near zero 

or near 100% power, and these jumps, referred to as ramp events, can be very rapid due to the wind 

power increasing approximately as the cube of the wind speed in the middle portion of the turbine’s 

power curve.  
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Figure 7.1.  Time series of 70m AGL wind speed (top panel) and equivalent wind power (bottom panel) 

using an ICE2 wind power curve,  averaged from the four SDSU tall tower towers in South Dakota, over 

an 8 day period from March 12-20, 2012.  

 

The essence of a ramp event is a large change in power production over a short interval of time. 

Ramp events are important for electric grid operators to account for, as they must continuously keep 

power production in nearly exact balance with power demand.  If large, sudden, and unanticipated 

changes in wind or solar power production occur, the grid operator must keep the grid in balance by 

making equally large and sudden changes in other conventional energy generation units.  These large 

and sudden changes in conventional generation can increase the costs of power generation, especially if 

the changes are not forecast accurately, both in terms of their amplitude and their timing.  

 

Standard metrics like MAE and RMSE equally weighted over the entire time series may not be well-

suited for wind energy forecast evaluation because the wind power production can be near constant for 

considerable periods of time, especially near 100% or 0%, while it is the periods of transition between 

those two states that are most important.  A wind ramp metric will provide a statistical measure of the 

accuracy of the model at forecasting large changes in power over short time intervals.  It will weigh 

model agreement for these events more than model agreement that occurs during periods of near 

constant power.  A ramp metric can be used to compare the skill of two models at forecasting ramp 

events, for documenting progress in improving a given model, and can also be used to provide a 

measure of the confidence that a forecast of a ramp of a particular magnitude and duration is correct. 

 

Despite the importance of ramp events for renewable energy generation and grid integration, no 

commonly accepted definition of a ramp event exists, nor is a single strict threshold defining a ramp 

possible, as the thresholds for when a ramp becomes important will vary from user to user, and possibly 

Wind speed (70m) 

Wind Power  
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situation to situation.  One of the key goals of WFIP was to develop a ramp tool that has the flexibility to 

be useful for a variety of users (wind farm developers or owners, utilities, grid operators) and that can 

be modified or tuned to be useful in a variety of situations. For example it could be used to develop a 

climatology of ramp events at a given location, or could be used to evaluate the skill of forecasting 

models at predicting to occurrence and characteristics of ramp events. 

 

The ramp tool described here has three main components.  The first is the identification of ramp 

events in a time series of power data, for which several different methodologies are developed and 

compared.  The second and third components pertain to forecasting of ramp events.  The first of these is 

to match observed ramp events with those predicted by a forecast model.  If ramp events are defined 

such that they are rare events, matching is relatively simple.  However, when the definition is relaxed so 

that ramp events become more frequent both in the observations and forecasts, matching events 

between the two time series can become more difficult and complicated.  The final component of the 

ramp tool is a methodology for scoring the ability of a model to forecast ramp events.  We develop a 

scoring metric that accounts for both the amplitude and timing (phase) errors in the forecast, and 

accounts for the different impacts of up and down ramp events.  The particular scoring rules that we use 

are intended to reflect the perspective of a grid operator; however the metric itself is flexible so that it 

could be easily modified to reflect the needs of other participants in the energy generation system. 

 

We note that the identification and forecast evaluation of ramp events has both similarities and 

differences with other meteorological phenomena, such as precipitation, air quality indices, severe 

convection, or droughts, and that the existing extensive set of analysis tools and techniques already 

developed by the meteorological community can help inform the development of a ramp tool.  In this 

regard it is useful to consider the essential characteristics of ramp events that determine their impact on 

the electric grid.   

 

The first characteristic of ramps is that they are defined as a rate of change.  Since production and 

demand is always in balance on the electric grid, the forecast problem is to predict how production (and 

demand) will change from the current state, and in particular how quickly it will change.  In this sense 

forecasting ramp events has similarities with flash flood forecasting, where not just the total amount of 

precipitation that falls is important, but the rate at which it falls over a given area is also essential.   

 

Second, timing (both onset and cessation) is essential for evaluation of ramp forecasts.  The 

importance of timing down to hourly or sub-hourly resolution is similar to several other forecasting 

problems, one of which is aviation forecasting.  Accurate predictions of the time when an airport will be 

closed or reopen due to snow, fog, or thunderstorms is essential for the safe and efficient operation of 

the air traffic system.   

 

Third, the direction of change of ramp events (up or down) is obviously crucial, as it is possible for a 

down-ramp to occur at the time when an up-ramp was forecast.  This seems to have few analogs in 

conventional weather forecasting, although seasonal forecasting of droughts and floods has similarities.  
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The combination of rate of change, timing, the directionality of ramp events, and the set of responses of 

the grid system to those changes, makes for a unique forecasting and forecast evaluation problem.  

 

This section is organized as follows.  Section 7.2 presents three different methods for defining ramp 

events, and compares results from them on time-series of power.  Section 7.3 discusses the issues 

related to ramp matching and presents a simple “closest in time” technique.   Forecast skill scoring and 

model evaluation procedures for a single ramp are presented in Section 7.4, and for a matrix of ramps in  

Section 7.5.  Results from the application of the ramp tool to the WFIP data set are shown in Section 7.6. 

  

7.2 Ramp definition and identification 

A ramp event is a large change in power Δp over a short time period Δt, and so can be defined by 

some combination of Δp, Δt, and the gradient Δp/ Δt.  There is no absolute definition of a ramp; the 

definition will depend on the particular application, the application will change from user to user, and 

possibly even over the course of time for a single user.  For example, if a utility has a pumped-storage 

facility with full capacity, they may be concerned with ramps of one magnitude and duration, but once 

the reservoir is empty and they have to rely on fossil plant units for load balancing, they likely would be 

interested in ramps of a different duration and magnitude.   

 

Also, users may require multiple definitions of ramps to be operative simultaneously.  For example, 

if a ramp event has a 60% capacity change in generation over a 4 hour period, it could inform a utility 

that a certain type of unit needs to be brought on-line.  However, if within that 4 hour period there is an 

embedded ramp with a 30% of capacity change in only 15 min, then a different type of unit may need to 

be brought online for that 15 min period within the 2 hour duration ramp.  For the most efficient 

scheduling, all of this information needs to be available, and a ramp metric must likewise address a 

matrix of time and amplitude scales simultaneously to give a realistic measure of forecast skill.   

 

Our starting assumption with the ramp definition is that the power time-series under consideration 

is the time series that is of importance to the user.  For example, if a wind plant operator is forecasting 

the output from that plant, then the time series considered would be the aggregate power production 

from the entire plant.  If on the other hand a grid operator is concerned with the aggregate power 

generated by wind and solar over their entire balancing area, then the time-series to be considered 

would be that larger aggregate power.  If this appropriately aggregated time-series is the basis upon 

which grid operation decisions are made, then it should not be filtered or smoothed in the analysis of 

ramp events.   Filtering routines such as the Swinging Door Algorithm (Bristol, 1990; Florita et al., 2013) 

have been proposed to compress a time series to a shorter series of linear segments within which 

smaller changes in the power are ignored as being noise.  In general filtering routines such as this are 

not necessary for defining ramps, and they can have the detrimental effect that the filtered time-series 

does not contain the full range of power variations present in the original time-series.  
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7.2.1   Fixed Time Interval Method 

Three different methods for identifying ramp events are developed and compared.  The first of 

these methods, referred to as the Fixed Time Interval method, uses a uses a sliding window of length WL 

and tests if the difference in power between the starting and ending points in the window equals or 

exceeds a threshold value,     |     |      , where      is the ramp definition threshold.  If the 

threshold criteria is met a ramp exists.  If a ramp exists and       the event is an upramp, if       it 

is a downramp.   All points within the window are marked as “up” or “down” if an up or down event are 

found, and separate time series of both all up events and all down events are recorded. The sliding 

window moves forward one time step, and the process is repeated until the end of the time series is 

reached.  Any contiguous time steps marked as being part of up events are concatenated into a single up 

event, and the same is done for the time-series of down events.  The ramp event can therefore be 

longer than the window length WL, but each point in the event is part of a window of length WL that 

satisfies the ramp criteria that         within that window. 

 

Each concatenated ramp event is defined by its center time, length, and total power change 

   |       |, where     and     are the power values at the start and end of the concatenated ramp 

event.  The power time-series in Figure 7.2 shows a series of ramp events that would be detected by the 

fixed time interval method.  

 

Although appealing because of its simplicity, this definition of a ramp event has the possible 

drawbacks that 1) the selected ramp events may not intuitively look like ramps, since larger values of    

can occur within the ramp than those defined by its endpoints, and 2) two ramp events, even up and 

down ramps, can be overlapping in time.  

 
Figure 7.2  Ramps identified by the Fixed Time Interval Method for a window length WL and a ramp 

threshold     .  Up-ramps are marked using a solid line, down-ramps using a dashed line. 
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7.2.2   Min-Max Method 

The next method, referred to as the Min-Max method, has been used previously for wind ramp 

detection (Cutler et al., 2007; Greaves et al., 2009; Bossavy et al., 2013), and avoids the two problems 

previously noted for the Fixed Time Interval method.  The Min-Max method finds the maximum 

amplitude change in power within a sliding window of length WL, and if this change meets the criteria 

   |         |      , then a ramp event occurs.  If more than one pair of points within the 

window meets the threshold criteria, only the largest      is defined as a ramp.  The initial ramp length is 

determined by the times      and      that correspond to      and      , so         The sliding 

window then moves forward, and a new search is made for (    ,      ).  If new values of either      

or       are found, the ramp criteria test is applied, and if it is passed a new ramp has been detected.  

The magnitudes and start/end times of all up and all down ramps are stored for the entire time-series.  

Ramps of the same sign can occur sequentially, can overlap in time, or can be embedded within in 

another.  In these cases the ramps are combined into a single ramp that can have length greater than 

WL.  Because of the use of the min-max values, ramps of opposite signs cannot overlap or be embedded 

in one another.   

 

Figure 7.3 shows the same power time-series as in Fig. 7.2, but ramp events as detected by the Min-

Max method are now displayed.  We note that segments of the time series that meet the ramp power 

threshold criteria, but are not detected because they were not the largest ramp within the window, 

would be detected if a smaller ramp window WL was used. This highlights the need for a generic ramp 

metric to span multiple time window definitions, as discussed further in Section 7.5.  

 
Figure 7.3.  Ramps identified by the Min-Max Method for a window length WL and a ramp threshold 

    .  
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7.2.3   Explicit Derivative Method 

The third method that we consider is referred to as the Explicit Derivative Method.  First, a 

smoothed time-derivative of the power 
  ̂

  
 is derived as the slope of a linear least-squares fit to the 

power over a time window WL.  Next, if |
  ̂

  
| ≥      a ramp exists, and if 

  ̂

  
 > 0 it is an up-ramp, if not it 

is a down-ramp.  The beginning of an up-ramp event is found by searching for a minimum in power over 

the interval ½ (WL ) earlier in time than the first point where the derivative threshold is met, since those 

points were included in the derivative calculation.  The end of an up-ramp is found searching for the 

maximum in power that occurs in the interval ½ (WL) after the last point of the initial derivative ramp.  

Similar tests are done for the ends of a down ramp, but first searching for a maximum at the start of the 

ramp and a minimum at the end of the ramp. 

 

With the derivative method it is possible for two ramps of opposite sign to be partially overlapping 

in time. Since this occurrence would make it difficult to compare and score model forecast and 

observation time-series, we modify the explicit derivative results to truncate ramps that overlap.  In the 

period of overlap of a down ramp followed by an up ramp, the minimum value of power is chosen as the 

end of the down ramp and the start of the new up ramp.  If more than one occurrence of the minimum 

value occurs, then the minimum closest to the down ramp is chosen as its end point, and the minimum 

closest to the up ramp is chosen as its beginning.  If the period of overlap consists of an up ramp flowed 

by a down ramp, a similar procedure is followed, except that the maximum value of power in the region 

of overlap becomes the dividing point between the two ramps.  Figure 7.4 displays time-series of power 

and the power derivative, and indicates ramps that are selected by this method.  We also note that as in 

the other two methods, any contiguous time steps marked as being part of ramp events of the same 

sign are concatenated into a single event, so that the ramp event can be longer than the window length 

WL.  
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Figure 7.4.  Top panel: ramps found by the explicit derivative method for a value of the smoothed 

derivative threshold given by     and window length WL.  Lower panel: the smoothed power derivative 

corresponding to the power data in the top panel.  The dashed lines indicate the smoothed derivative 

thresholds defining up and down ramps.  

 

7.3 Matching of forecast and observed ramps 

To evaluate the skill of a forecast model in predicting ramp events, the next step is to develop a 

methodology for matching the observed and modeled events.  This process can be complicated by the 

fact that ramps of opposite signs occur, their occurrence can be relatively frequent for some power 

thresholds, and phase lags (timing errors) will exist in the forecasts, which themselves can be a function 

of the length of the forecast (forecast horizon).  

 

The general philosophy in our methodology is to match events that are closest in time; if multiple 

events have the same time separation, then those of the same sign are matched; if more than one pair 

of events has the same time separation and sign, those that are closest in power amplitude are 

matched. 
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In more detail, the first step is to generate comparable long time-series of model and observed 

ramp events.  For the model, this is done by creating a time-series of forecast power for a particular 

forecast horizon.  For example, a time-series of three hour power forecasts is created by concatenating 

all three-hour forecasts over a length of time T, where T is much greater than the maximum length 

forecast (15 h for the RAP and HRRR), and equal in length to the observed time series under 

consideration.  All ramps within the observed and pseudo-model-time series are then found using one of 

the techniques described in section 7.2.  The advantages of using a pseudo-time series of equal length 

forecasts is that first, a long time series is available, so that problems arising when part of a ramp is 

present at the beginning or end of a 15 h forecast are avoided.  Second, statistics can be developed that 

are associated with a particular forecast length (e.g., a 4 hour forecast has a ramp forecast skill of X.)  

 

The inputs to the matching algorithm are the time series of length T of ramp events from the 

observations and forecasts, defined by their center time, sign, and power amplitude.  The number of 

events in the two time-series in general will not be equal.  Using these inputs, a matrix of time shifts is 

created by comparing the center times of each model event with every observed event.  A time-series of 

type of event is also formed for every pair of model and observed events,  consisting of +1 for an up/up 

or down/down pair, and a -1 if it is an up/down or down/up pair.  A third time series is created that 

consists of the difference in power between every pair of model and observed events.  

 

The matrix of time shifts is then searched for the minimum value(s), corresponding to the model 

ramps that are closest in time to the observed.   Frequently events with the same minimum will be 

found, as there are a limited number of time shifts possible.  If more than one minimum exists, all of the 

minima are evaluated for instances when one model ramp is paired with two equally spaced (preceding 

and following) observed ramps.  If the model value is paired with only one observation, these two 

events are matched, and then eliminated (in all three matrices) from any further searching.  If the model 

ramp is paired with two observed events at the current time-shift minima, the choice of which one is 

matched with the model event is then made based on the “type of event” matrix and “difference in 

power” matrix.  First, if the two observed ramps are of opposite sign, the one that is the same sign as 

the model ramp is selected as the match.  If both observed ramps are of the same or the opposite sign 

as model ramp, the observed ramp with the smaller value in the “difference in power” matrix is selected 

as the match.  Again, once a modeled and observed ramp event are matched, both are removed from all 

three matrices, and the search for a minimum in the time shift is applied again.  This process of 

searching through all of the model ramps is repeated until either all of the model ramps are matched or 

determined to be unmatched up/null or down/null events.   Next the same process is repeated for the 

remaining unmatched observed ramps to determine if they are unmatched null/up or null/down events.  

 

7.4 Forecast skill scoring methodology using single ramp definition 

The ramp identification and ramp matching procedures result in time series of matched pairs of 

ramps or unmatched events, each defined by their power gain/loss          , length of event, and 

their center times      ,     .  Using this time series of events, a forecast score is determined by 



 

                   WFIP NOAA Final Report - Page 114 
 

 

 
DE-EE0003080 

comparing the forecast and observed characteristics of each event.  The ramp skill score accounts for 

model ramps that have been matched to observed ramps, model ramps that have not been matched 

with observed ramps, and observed ramps that have not been matched with model ramps. The skill 

score is intended to represent a utility operator’s perspective for different up/down ramp scenarios, 

incorporating phase and amplitude errors when needed, and recognizing that up and down ramp events 

can have different impacts on grid operation.  Additionally, the skill score is designed so that a set of 

random forecasts will have near zero skill.  A negative skill indicates the model is worse than random, 

and any positive value indicates the model has value.  Although a specific set of rules is applied, it is not 

possible to generate a single set that would be applicable for all users in all situations.  These rules 

should be viewed as one particular realization, and are meant to be modified by users to best suit their 

particular circumstances.  

 

The first step is to classify the different types of ramp scenarios that are possible, indicated in Table 

7.1.  This is similar to a 3x3 contingency table (Wilks, 2006) consisting of up, down and null events, 

except that the null-null case is not considered and does not affect the skill score.   Near-zero scores are 

then assigned to the instances involving null (un-matched) events, which are scenarios 2, 5, 7 and 8 

(Table 7.2).  Although these null events could be considered to have no forecast skill, slightly positive 

non-zero values are applied to the instances when the poor forecast results in total power supply 

greater than demand (scenarios 5 and 7), which can be solved by curtailing wind energy generation.  In 

contrast, slightly negative non-zero values are applied to the instances when the poor forecast results in 

total power supply being less than demand (scenarios 2 and 8), which could require a spot market 

power purchase that in general would be more expensive to the utility than wind curtailment.  For an 

equal distribution of null scenarios 2, 5, 7 and 8, the model will have zero skill.  

 

 

 

Scenario Model Observed 

1 Up Up 

2 Up Null 

3 Up Down 

4 Down Down 

5 Down Null 

6 Down Up 

7 Null Up 

8 Null Down 

 

Table 7.1.  Scenario definitions for matched and un-matched ramp events.  
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Scenario Model Observed Utility Action Score 

2 Up Null 
Fossil fuel (FF) spot market purchase or 

Cancel planned decrease of FF units 
-0.1 

5 Down Null 
Wind curtailment or 

Cancel planned increase of FF units 
+0.1 

7 Null Up 
Wind curtailment or 

Decrease existing FF units 
+0.1 

8 Null Down FF spot market purchase -0.1 

 

Table 7.2.  Scores for the four possible null scenarios.  

 

For the non-Null scenarios a range of scores is possible depending on the forecast’s phase and 

amplitude errors, as shown in Table 3.  Correct up/up and down/down events have scores ranging from 

+1.0 (for zero phase lag and zero amplitude error) to zero (when the phase lag and/or amplitude error 

become large).  Incorrect non-null forecasts of up/down or down/up have mostly negative scores.  

However, these are modified on the smaller end of their range by applying the constraint that as the 

phase error becomes large for scenarios 1, 3, 4 and 6, the score asymptotes to that for the 

corresponding pair of null events.   

MinScoreScenario 1         ScoreScenario 2 + ScoreScenario 7 

MaxScoreScenario 3        ScoreScenario 2 + ScoreScenario 8 

MinScoreScenario 4         ScoreScenario 5 + ScoreScenario 8 

MaxScoreScenario 6         ScoreScenario 5+ ScoreScenario 7 

 

For example, as the time separation between a forecast/observed up/up event (scenario 1) 

becomes large, the model skill asymptotes to the sum of an up/null and a null/up event (scenario 2 + 

scenario 7). This constraint forces the scores for scenarios 3 and 6 to approach values of -0.2 and +0.2 

for large phase lags, given the previous assumptions of small but non-zero score values for scenarios 2, 

5, 7 and 8 given in Table 7.2.  On the more extreme end of the skill range, the up/down event (scenario 

3) also has a worse score (-1.2) than a down/up event (scenario 6). This is consistent with the fact that 

an up/down ramp event, with any phase lag, will have a more costly impact on grid operations than a 

down/up event, as the former will require a spot market power purchase, while the later can be solved 

by wind curtailment.   
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Scenario Model Observed Score 

1 Up Up +1.0 to 0.0 

2 Up Null -0.1 

3 Up Down -1.2 to -0.2 

4 Down Down +1.0 to 0.0 

5 Down Null +0.1 

6 Down Up -0.8 to +0.2 

7 Null Up +0.1 

8 Null Down -0.1 

 

Table 7.3.  Range of scores possible for all 8 event scenarios.  

 

Equations are derived to compute the scores for the non-Null scenarios (1, 3, 4, and 6) that take into 

account the timing and amplitude of the forecast ramp compared to the observed ramp, and can 

include penalties when the model over-predicts the amplitude or predicts its occurrence later than 

observed.  The score for an individual ramp event in one of these four scenarios is given by: 

 

                     √                     √     

 

where the # sign refers to the 4 non-null ramp event scenarios, and MaxAmpScore is the first (most 

extreme) value and  MinAmpScore the second value of the range of scores shown in Table 7.3 for each 

of the non-null scenarios.  The forecast timing and amplitude skill parameters τ and α are defined as the 

linear equations: 

   [  
|       |

  
]      

 

     [  |       |]      

 

     [
|       |

 
]      

 

   and    are functions that are unity except in the cases when a late prediction penalty or a sign 

prediction penalty occurs (discussed below) in which case             .  With these definitions the 

timing skill falls in the range        , and the amplitude skill falls in the range            . The 

amplitude skill   is unity if the observed ramp amplitude identically matches the forecast amplitude and 
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both are greater than the threshold     .  The minimum value of   occurs when one of either the 

forecast or observed ramp amplitudes is      and the other is 1.  The minimum amplitude skill cannot 

become less than      if an observed and forecast ramp are found that both meet the minimum 

threshold criteria     . 

 

The score equation has the properties that for up/up and down/down events, when the forecast has no 

timing error and no amplitude error (   ,      the score is equal to the most extreme value 

(MaxAmpValue) for that scenario in Table 7.3, and when the timing error equals its maximum allowed 

value (the window length WL) score is equal to its value closest to zero (MinAmpValue) in Table 7.3 

value for that scenario.  For an up/down or down/up event, the largest the amplitude error can be is 2, 

      , and the score becomes MaxAmpValue in Table 3, while the smallest the amplitude error can 

be is 2     , in which case          , and the score becomes      MinAmpValue.  

 

 The last option in the scoring is to include values different than unity for the Late Prediction 

Penalty (LPP) or Under/Over Prediction Penalty (UOPP) functions       . The LPP occurs only for those 

scenarios when a late forecast event is worse for a utility than an early forecast because it implies a spot 

market power purchase rather than wind curtailment.  Likewise, the UOPP occurs only for those 

scenarios when the sign of the difference between forecast and observed ramp amplitudes negatively 

impacts grid operation. 

 

 The Late Prediction Penalty for the 4 non-null cases is given by 

    [  
(       )            

  
]              

 otherwise         

 

 The Under/Over Prediction Penalty is given by  

      
(       )             

      
             

otherwise         

 

Scenario Model Observed Weight LPP Weight UOPP 

1 Up Up 0 0.15 

3 Up Down 0 0 

4 Down Down 0.15 0.15 

6 Down Up 0 0 

 

Table 7.4 Weights applied for ramp Late Prediction Penalties and Under/Over Prediction Penalties.  
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There is no LPP for scenario 1 since a late forecast will incur curtailment of wind power but no spot 

market power purchase.  The UOPP for Scenario 1 is applied (WeightUOPP1 = 0.15) when the forecast 

over-predicts the ramp amplitude because this will require a spot market power purchase to cover the 

shortage of wind power actually produced.  If the wind ramp power amplitude is under-predicted, the 

wind simply will be curtailed and      . 

 

For Scenario 3 (up/down) there is no LPP since a late forecast will be less onerous for a grid operator 

than one that predicts an up event at the precise time that an observed down ramp occurs.  There is no 

additional UOPP for Scenario 3 since the forecast is always over-predicting the power.  

 

The LPP for Scenario 4 (down/down) is applied (WeightLPP4 = 0.15) when the forecast is late 

because this will require a spot market power purchase to cover the shortage of wind power actually 

produced.  If on the other hand the down ramp is forecast early, then wind will need to be curtailed or 

fossil fuel generation scaled back if possible and      . The UOPP for Scenario 4 is applied 

(WeightUOPP4 = 0.15) when the forecast ramp power amplitude is smaller than the observed because 

this will require a spot market power purchase to cover the shortage of wind power actually produced.   

If the ramp amplitude is over-predicted, the wind simply will be curtailed or fossil fuel generation will be 

turned down if possible and      .  

 

The final non-null scenario, Scenario 6 (down/up) has no LPP since a late forecast will incur 

curtailment of wind power but no spot market power purchase.  Also, there is no UOPP for scenario 6 

since the forecast is always under-predicting the power.  

 

We note that when the LPP and UOPP are applied (WeigthLPP = 0.15 and WeightUOPP = 0.15) τ and 

α decrease quadratically rather than linearly as the timing error and amplitude errors increase.  Also, the 

tunable penalty weights here have been set to nominal values of 0.15 for both LPP and UOPP, but any 

value could be used. 

7.5 Forecast skill scoring: Matrix of skill values 

 

The ramp metric developed above applies to ramps defined by a single power amplitude threshold 

and window length.  By itself, however, the forecast skill for this single definition of a ramp does not 

provide the full measure of the value of the forecast to a utility or grid operator.  For example, perfect 

forecasts of a 30% power capacity up-ramp over two hours and a 90% up-ramp over two hours will both 

have forecast skills of 1.0, yet forecasting the larger ramp will have more value than the smaller ramp.    

 

Also, if one is trying to answer to identify which of several models has the highest skill at forecasting 

ramps, the answer may change depending on which power threshold and which window length are 

used.  Ideally, one would like to know which model is best for a range of power thresholds and window 
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lengths that could reasonably be of importance for grid operations, and to then average the model’s skill 

over this range of values.   

 

As a means to condense forecast skill for a range of ramp thresholds, we consider a matrix of ramp 

skills.  Figure 7.5 illustrates the concept of a matrix of ramp skills in a schematic form.  Skill scores as 

defined in Section 7.4 for particular values of power threshold and window length are calculated and 

placed into each matrix element.  Skill scores using extreme ramp definitions, with the largest power 

thresholds and the shortest window lengths, are placed in the top left corner of the matrix.  Skill scores 

for more frequently occurring and weaker ramp events, defined using lower power thresholds and 

longer window lengths, will be placed in the bottom right corner of the matrix.   

 

In place of averaging the ramp skill scores in all of the matrix elements equally, a weighting function 

is applied before averaging that accounts for the fact that the skill scores for the more extreme events 

will have a greater impact on grid operations than the weaker ramps.  

 

 
Figure 7.5  Schematic diagram of a weighted ramp matrix.  Extreme ramps, with large changes in power 

over short time intervals, are placed in the top-left corner, while low amplitude ramps of longer duration 

are placed in the bottom right corner.  A weighting function, denoted by the red isopleths, is then applied 

to each matrix element, before averaging into a single overall model skill score.  

7.6 Results from the WFIP data denial experiments 

The ramp metric tool has been applied to the WFIP observations and model forecasts from the 6 control 

(no WFIP observations assimilated) and experimental (with WFIP observations assimilated) simulations 

in the data denial experiments, for all three of the ramp definition methods.  An example of ramp 

identification using the Min-Max method from the September DD episode, applied to observations from 
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the SDSU tower FAH, is displayed in Fig. 7.6.  The top panel shows the computed power from the tower 

80m anemometer, the middle panel the power derived from the RAP control simulation, and the 

bottom panel the power from the RAP experimental simulation that assimilates the special WFIP 

observations.  The model values are shown at the model initialization time, hour 00. The model values 

are at 15 min resolution, and the original 10 min observed values have been interpolated to the same 15 

min intervals of the model.  Using a ramp definition of a power change greater than 50% over a nominal 

2 h period, in the observations 6 up ramps are found (shown in red) and 8 down ramps (shown in 

green).  In contrast, the control simulation finds only 2 up and 2 down ramps, while the experimental 

simulation finds 5 of each, with the additional ramps generally matching up well with the observed 

ramps in the top panel.  

 

 
Figure 7.6 Time series of power estimated from anemometer measurements on a tall tower and from the 

RAP control model.  Ramp events for the three ramp definition methods are shown using a 50% power 

change threshold over 2 hours, red for up ramps and green for down.  The numbers of ramps found in 

each time series are shown on the right. 

 

Figure 7.7 displays the number of occurrences of ramp events found using the Min-Max ramp definition 

method, for forecast hour 00 (initialization time, left panels) and hour 06 (right panels), for the RAP 

control (top panels) and experimental (bottom panels) simulations, and for a range of ramp power 

thresholds from 30 to 70%, and window lengths of 30, 60, 120 and 180 minutes.  Relatively few extreme 

ramp events are found (top left corner of each panel) while many small amplitude and long ramps are 

found (bottom right corner of each panel).  A slightly larger number of events is found at forecast hour 
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06 compared to the initialization time, indicating that the RAP’s initialization procedure leads to slightly 

smoother wind fields at hour 00.  The differences between the number of events in the control and 

experimental simulations are also relatively small, indicating that although the assimilation of the special 

observations may change the strength and timing of the ramp events, it does not significantly change 

their overall numbers.  Summing the number of events in the matrices at forecast hour 00 gives 12.1 for 

both the control and experimental simulations, while at forecast hour 06 there are 15.0 for the control 

and 15.3 for the experimental simulation.   In contrast to the similarity between the four panels of 

model counts, the number of occurrences in the observations is much larger (note the different scale on 

color bar).  This is because individual towers are used in the analysis, and at 13 km resolution the model 

has considerably smoother fields than the observed point location power time series.  

 

   

  

 

 

Figure 7.7.  The average number of occurrences of ramp events that fall into each matrix bin per DD 

episode using the Min-Max Method, for the forecast initialization time (hour 00, left panels) and forecast 

hour 06 (middle panels), for the control (top) and experimental run (bottom) of the ESRL RAP model, NSA 

and SSA combined.   The top right panel is the same but for the tall tower observations.  The ramp 

definition power threshold ranges from 30 to 70%, and the window length from 30 to 180 minutes.  

 

Skill score matrices for the RAP control simulations are shown in Fig. 7.8 for the initialization time and 

hourly forecasts out to 7 hours, averaged for the 6 DD episodes, NSA and SSA combined.  In combining 

the two study areas, each area is also weighted by the number of tower locations in that area that were 

used to compute the statistics. The skill is largest for long window lengths (180 minutes) but is quite 

uniform across all amplitudes of ramps.   The skill is greatest at the initialization time, and slowly decays 
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with forecast length.   Skill scores for the experimental RAP simulations look qualitatively similar and are 

not shown.    

 
Figure 7.8.  The matrix of skill scores for the control ESRL RAP forecasts averaged for all 6 DD episodes, 

NSA and SSA combined. 

 

In order to derive a single skill score for the model, a weighting matrix is required.  The weighting matrix 

that we have used is simply to start with a weight if 1.0 in the top left corner (most extreme ramp) and 

to decrease the weight by 10% for each 10% change in ramp power threshold and each increment in 

window length, as shown in Fig. 7.9.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9.  The default weighting scores applied to the matrices of skill scores shown in Fig. 7.8.   
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The average score across the entire matrix is shown in the top panel of Figs. 7.10 for the fixed time-

interval method, using both an equal weighting of all the matrix elements (blue lines), and when using 

the weighting matrix (red lines).  The solid lines are for the RAP control simulation, while the dashed 

lines are for the experimental simulation. The un-weighted averaged skill score is greater than the 

weighted skills core, because the model has less skill at forecasting the most extreme ramps with the 

largest power changes over short window lengths.  The experimental simulation (dashed line) is seen to 

have greater skill than the control simulation for the first 9 forecast hours, after which the differences 

between the two are negligible.  The lower panel of Fig. 7.10 shows the percent improvement of the 

experimental simulation compared to the control.  The weighted improvement averages to 

approximately 7% from forecast hours 1-9, with peak improvements reaching 11%.   

 
Figure 7.10.  Skill score results for the Fixed-Time ramp identification method, averaged for all DD 

episodes, NSA and SSA combined. Top panel: Skill scores for the Control (solid) and Experimental 

(dashed) data denial simulations, for forecast hours 0-14.  Green is the skill score with equal weighting of 

all matrix elements, purple is when using the weighting matrix shown in Fig. 7.9.  Bottom panel:  the 

percent improvement in the experimental forecasts over the control, for the un-weighted (green) and 

weighted (purple) matrices of skill scores.  

 

The averaged skill scores for the RAP data denial simulations for the Min-Max and Explicit Derivative 

methods are shown in Figs. 7.11 and 7.12.  For the Min-Max method the weighted improvement 

averages to approximately 9% for forecast hours 1-9, with peak improvements reaching 14%, while for 

the Explicit Derivative method the weighted improvement averages to approximately 7% for forecast 

hours 1-9, with peak improvements reaching 10%.  Notably, the improvement in skill score does not 

decrease as quickly with forecast length as do the standard bulk statistics shown in Section 5, but is 

much more constant over the first 9 forecast hours.   
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Figure 7.11.  The same as Fig. 7.10, except for the Min-Max ramp detection method. 

 

 

 
Figure 7.12.  The same as Fig. 7.10, except for the explicit derivative ramp detection method. 

 

A breakdown of the ramp events into each of the 8 different possible scenarios is shown in Fig. 7.13.   
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longer duration ramps were included in the ramp definition, or if the ramp metric were applied to 

spatially averaged data, many fewer model null occurrences (scenario’s 7 and 8) would occur. The next 

most common events are scenarios 1 (up/up) and 4 (down/down).  Scenarios 2 (up/null) and 5 

(down/null) are the next most common, but have much lower rates of occurrence than scenarios 1 and 

4.  The least common of all are scenarios 3 (up/down) and 6 (down/up). Again the number of these 

inverse events would decrease greatly with longer duration ramp definitions and with any degree of 

spatial averaging.  Assimilation of the WFIP observations results in more up/up (scenario 1) and 

down/down (scenario 2) events, as well as fewer null/up (scenario 7) and null/down (scenario 8) missed 

forecast events.  For the up/down (scenario 3) and down/up (scenario 6) obverse events, assimilation of 

the WFIP observations makes little difference on average across all the forecast hours shown.  The 

up/null (scenario 2) and down/null (scenario 5) are the only events where assimilation of the WFIP 

observations does not improve the forecasts.  The reason for this is not clear.  

 

 
Figure 7.13.  The number of matched ramp events per day and per tower site, in each of the 8 ramp 

scenarios using the Min-Max method for all 6 DD episodes, NSA and SSA combined. Red is for the control 

simulation, and blue for the experimental.  All 20    and    combinations shown in Fig. 7.8 are summed 

to form the number of events.  

 

The ramp skill scores can also be broken down into each scenario category.  Fig. 7.14 shows the sum of 

the matrix-weighted scores average for all 6 DD episodes, NSA and SSA combined.  Considering first the 

control simulation, the positive contribution to skill score comes from scenarios 1 and 4, when the 
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forecast accurately predicts up ramps when they are observed, and down ramps when they are 

observed.   Scenarios 7 and 8 (model forecast null events when an observed up or down ramp occurs) 

have on average no net effect, as do scenarios 2 and 5 (observed null events when a forecast up or 

down ramp occurs).  Scenarios 3 and 6 (ramp forecasts with the opposite sign than is observed) have a 

negative contribution that is much smaller than the positive contribution of scenarios 1 and 4.  

 

The improvement in forecast skill in the experimental simulations also comes solely from scenarios 1 

and 4, with greater positive summed scores for the experimental simulations (blue bars) than the 

control (red bars). There is no net change in summed scores for scenarios 7 and 8, while for scenarios 2 

and 5, and 3 and 6, the net impact is very small or slightly negative.  It is somewhat surprising that 

assimilation of the WFIP observations improves the skill of correctly forecast events (scenarios 1 and 2) 

but does not improve the scores of inversely forecast events (scenarios 3 and 6).  One possible reason 

might be if the observed ramps that contribute to the inverse events are very local, occurring at a single 

tower site or over very small geographic areas, assimilation of that single tower with may not have 

sufficient weight to alter the forecast initialization, as it shouldn’t since it is such a localized event.  

 

 
Figure 7.14.  Sum of the matrix-weighted scores for each ramp scenario type, for all 6 DD episodes, NSA 

and SSA combined.  

 

The next component of the ramp analysis for WFIP is to examine the differences in ramp forecast skill 

between the different DD episodes and between the NSA and SSA.  Figure 7.15 shows the percent 
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improvement in ramp forecast skill averaged over forecast hours 1-9, for each of the 6 DD episodes, and 

for the NSA (blue) and SSA (red).  Improvements in the NSA are larger than the SSA, averaging 10.6% for 

the NSA versus 3.6% for the SSA (consistent with the bulk statistics MAE improvement found in Section 

6).  Also, the improvement is the NSA is more uniform across the 5 DD episodes than it is in the south.  

Determination of the reason for the differences between the NSA and SSA will require additional 

research.  Hypotheses include, first, that the new WFIP observations were spread over a wider 

geographic area in the NSA than in the SSA, allowing for the model initial field improvements to be more 

robust and affect a wider area, thereby having a more lasting positive impact before advecting away 

from the area of interest.  Second, the NSA had more tall tower observations, more wind profiler 

observations, and the addition of nacelle anemometer observations; the greater numbers of 

observations seems likely to have also contributed to the greater improvement in ramp forecast skill.  

 
 

Figure 7.15 Percent improvement in ramp forecast skill using the Min-Max ramp definition, averaged for 

the first 9 forecast hours, for each of the 5 DD episodes, and for the NSA (orange) and SSA (green).  

 
 
The final component of the ramp analysis is to investigate the model skill at up versus down ramps, and 

the impact of the WFIP data assimilation on both.  To more fairly compare the model skill for up and 

down ramps, a simplified symmetric set of scoring rules was applied, as listed in Table 7.5, with no late 

prediction or over/under prediction penalties.  
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Scenario Model Observed Score 

1 Up Up +1.0 to 0.0 

2 Up Null 0.0 

3 Up Down -1.0 to 0.0 

4 Down Down +1.0 to 0.0 

5 Down Null 0.0 

6 Down Up -1.0 to 0.0 

7 Null Up 0.0 

8 Null Down 0.0 

 
Table 7.5 Range of scores possible for all 8 event scenarios for a simplified, symmetric up and down ramp 
scoring scheme. 
 
As can be seen in Fig. 7.16, down ramps (red curves) are more difficult to predict than up ramps (blue 

curves).  Also, the solid lines are for the control that does not assimilate in the WFIP obs, while the 

dashed line is for the experimental simulations that do assimilate the WFIP observations.  Assimilation 

of the WFIP obs increases the forecast skill, and this increase can be seen for the first 12 forecast hours.   
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Figure 7.16.  Ramp forecast skill for up (blue) and down (red) ramps using a symmetric set of scoring 
scenarios, using the weighted matrix of events.  Solid lines are for the RAP control, and dashed lines for 
the RAP experimental simulations assimilating the WFIP observations.  
 

 
8. Surface flux and wind profile observations 

 
Sonic anemometer measurements were made by the Field Research Division of the Air Resources 

Laboratory of NOAA at the Brady airport (BDY), Colorado City airport (COC), and Jayton (JTN) National 

Profiler Network sites, all in Texas. The purpose of these measurements was to examine the relationship 

between measured turbulent fluxes near the surface and wind speed profiles extending to heights 

where wind turbines operate. Some highlights of these measurements will be presented here. 

 

The sonic anemometer at BDY was located at a height of 3.19 m. Wind speed profiles for the estimation 

of displacement height d and roughness length z0 were obtained using the sonic anemometer, a cup and 

vane anemometer at a height of 10 m on the same tower, and a nearby Atmospheric Systems 

Corporation (ASC) sodar measuring wind speeds in 10 m intervals from 30 m to 200 m. Most of the fetch 

for these measurements consisted of closely cropped and often dry grass with patchy scattered shrubs 

in the distance. Groves of trees several meters in height were present in some approaches within 100 m 

of the measurements (between approximately 90° and clockwise to 225°). A method was developed for 

the estimation of d and z0 in neutral conditions excluding wind directions between 90° and 225°. The 

detailed description of the method for determining d and z0 is beyond the scope of this summary, but it 

is based on Bayesian statistical methods. Neutral conditions were defined as the absolute value of the 
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kinematic heat flux less than 0.01 m s-1 °C and wind speeds greater than 7 m s-1. Values of 3.6 and 2.0 cm 

were determined for d and z0, respectively. 

 

The sonic anemometer at COC was located at a height of 3.25 m. Wind speed profiles for the estimation 

of d and z0  were obtained using the sonic anemometer and a nearby ASC sodar measuring wind speeds 

in 10 m intervals beginning at 30 m continuously up to 200 m. Most of the fetch between 90° and 270° 

(southerly wind components) consisted of short grasses, airport runway, and a few scattered larger 

objects. Between 270° and 90° (northerly components) the fetch consisted of a heterogeneous mix of 

grasses, weeds, and larger shrubs. Most of the neutral cases for the determination of d and z0 had winds 

from the south and southeast.  d and z0 were determined to be zero and 5 cm, respectively. 

 

The sonic anemometer at JTN was located atop a tower at a height of 10 m. Wind speed profiles were 

obtained using the sonic anemometer and a nearby Atmospheric Research Technology sodar measuring 

wind speeds in 10 m intervals beginning at 30 m continuously up to 200 m. The site was located in a 

relatively open forest consisting primarily of mesquite trees about 4-7 m in height. The fetch was 

relatively homogeneous in all directions although the trees were somewhat sparser to the north. 

Displacement height and z0 were determined to be 1.5 m and 45 cm, respectively. 

 

Figure 8.1 shows the diurnal averages for friction velocity and sensible heat flux during the winter, 

spring, summer and autumn seasons as represented by the months of January, April, July, and October. 

The sensible heat fluxes were calculated from the kinematic heat fluxes assuming an air density of 1.2 kg 

m-3 and 0.95 atmospheres. The friction velocities at BDY and JTN are similar whereas JTN has much 

larger values reflecting the presences of an open forest canopy. JTN also has significantly larger daytime 

sensible heat fluxes than the other sites, with the largest difference of roughly 50% occurring in the 

spring.   

 

Figure 8.2 shows the fractional differences between the wind speeds predicted by the standard 

logarithmic wind speed profile relationship and the wind speeds observed by the sonic anemometers 

and sodars. At each site the values of d and z0 specified above were used in the logarithmic profiles 

together with the dimensionless ψ functions recommended by Businger et al. (1971). Because of 

potential flow obstructions, the results shown are for wind directions of 225° clockwise to 90° for BDY, 

90° clockwise to 270° for COC, and all directions for JTN. The fractional differences are broken down into 

ranges of Obukhov length (L, m) and wind speed (WS, m s-1). The range of L is given in brackets [ ] and is 

either open ended (e.g., L [<-20] represents all L between negative infinity and -20 m) or a closed range 

(e.g., L [-20,0] represents all L between -20 and 0 m). 

 

The most apparent feature of these plots are the huge differences (over predictions) that were 

associated with the most strongly stable conditions (0 m <L< 20 m) at all 3 sites. This result is not 

surprising given that the logarithmic profile is derived for the “constant flux” surface layer (Garrett, 

1992), which is very shallow in stable conditions. In these cases the winds at turbine level may be 

effectively decoupled from the surface. For all other ranges of L the fractional errors commonly have 
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magnitudes of less than 20%. In unstable conditions there is a tendency for the fractional error 

magnitudes to be a little larger with higher wind speeds (WS>4) compared to all wind speeds (WS>0) for 

a given range of L, which is consistent with the wind speed dependent bias discussed in Section 6.  All 3 

sites exhibited significantly larger negative fractional errors (under predictions) for the most unstable 

conditions (-20<L<0) and highest wind speeds (WS>4). With the exception of the most stable conditions, 

the fractional errors in stable conditions were generally less than 10-20% with a slight tendency toward 

under prediction. These errors tended to decrease as wind speed increased. 

 

An engineering alternative to using logarithmic wind profiles is the use of power laws to describe the 

variation of wind speed with height. Figure 8.3 shows the best-fit values determined for the exponent in 

the wind speed power law relationship at 80 m height expressed as a function of both the stability 

parameter z/L and time of day. The 10-minute average wind speed values measured by the sodar at 80 

m height were used with reference to the 10-minute wind speeds measured by the corresponding sonic 

anemometer in the determinations. The range of values allowed in the iteration to the best fit value was 

between 0 and 1. While there is a great deal of scatter, the results are similar for the 3 sites. Nighttime 

values were commonly in the range of 0.2 to 0.6, a little less at BDY, a little more at JTN. Daytime values 

were generally between 0 and 0.2 with values commonly ranging up to about 0.3 at COC and JTN. As 

expected, the value of the exponent was a strong function of z/L. 
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Figure 8.1. Diurnal averages for friction velocity (u*) and sensible heat flux for winter, spring, summer, 
and fall, represented by the months of January, April, July, and October for the Brady (BDY), Colorado 
City (COC), and Jayton (JTN) sites. CST is Central Standard Time. 
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Figure 8.2. Fractional errors comparing winds predicted by the logarithmic wind speed and observed 
winds at the surface (sonic anemometer) and aloft (sodar) for the 3 sites. The notation used in the legend 
is explained in the accompanying text. 
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Figure 8.3. Best-fit values for the exponent to the wind speed power law by stability parameter z/L and 
time of day. Determinations used the 10-minute averages for the sonic anemometer near the surface 
and sodar at the 80 m height. 
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9.  Summary and Conclusion 
 
WFIP is a DOE sponsored research project whose overarching goals are to improve the accuracy of 

short-term wind energy forecasts, and to demonstrate the economic value of these improvements.  

WFIP participants included several DOE national laboratories; two NOAA research laboratories; the 

NOAA National Weather Service/NWS; and two teams of partners from the private sector and university 

communities, led by AWS Truepower and WindLogics.   

 

Prior to WFIP, NOAA did not have a focused program to improve its foundational wind forecasts for the 

wind energy industry. WFIP offered the opportunity for NOAA to jump-start its efforts at improving 

forecast model skill for this industry, as well as the opportunity to work directly with experts in wind 

energy.  It also offered the WFIP private sector partners (WindLogics inc., and AWS Truepower) the 

opportunity to advance their own forecasting capabilities either through use of the improved NOAA 

forecasts or through their own forecasting systems.   

  

WFIP considered two avenues for improving wind energy forecasts.  The first was through the 

assimilation of new meteorological observations into numerical weather forecast models.  Additional 

observations allow for a more precise depiction of the model’s initial state of the atmosphere, 

potentially resulting in more accurate forecasts.  The intent of the WFIP instrumentation networks were 

to provide observations through a deep layer of the atmosphere, and over a sufficiently broad area, to 

influence NWP forecasts out to 6 hours lead time.   New instrumentation was deployed or acquired 

during concurrent year-long field campaigns in two high wind energy resource areas of the U.S.  The first 

was in the upper Great Plains, including North Dakota, South Dakota, Nebraska, Minnesota and Iowa, 

where DOE and NOAA partnered with the WindLogics team.  The second field campaign was centered in 

west Texas, where DOE and NOAA partnered with the AWS Truepower team.   The WFIP observing 

systems included 12 wind profiling radars, 12 sodars, and several lidars.  In addition, WFIP allowed for 

NOAA to collect and assimilate for the first time proprietary tall tower (184 locations) and wind turbine 

nacelle anemometer (411 locations) meteorological observations from the wind energy industry. A key 

component of WFIP was to develop improved quality control (QC) procedures to ensure that the 

assimilated observations were as accurate as possible, as a few erroneous observations can easily 

negate the positive impact of many accurate observations when assimilated into a NWP model.  With 

proper data QC algorithms applied, good agreement was found between the co-located sodar, wind 

profiling radar, and lidar observed wind speeds.  

 

The second avenue for improving wind energy forecasts was to improve the NWP models directly.  

Midway through the WFIP field program, NOAA/NWS upgraded its operational hourly-updated NWP 

forecast model from the Rapid Update Cycle (RUC) model to the Rapid Refresh (RAP) model, and the 

impacts of this upgrade have been evaluated using WFIP observations.  Also, during the course of WFIP 

NOAA/ESRL made further improvements to the RAP and HRRR models, incorporating more advanced  

model physics and numerics, new data types assimilated, and better data assimilation procedures, 

including for the assimilation of wind profiling radar data.  The WFIP observations  allowed for a 
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quantification of the improvement of the HRRR and RAP, and allowed the NOAA/NWS to evaluate its 

North American Mesoscale (NAM) model skill at forecasting hub-height winds for the first time.   

 

Due to the great volumes of data generated by the HRRR, raw model output from it was not publically 

available prior to WFIP.  With WFIP funding NOAA was to obtain the computer infrastructure to make 

this data available in real-time to both the two private sector teams, as well as to any other party on the 

wind energy industry.   

 

Pseudo-power forecasts were evaluated by converting tall tower (mostly 60-80m) and model wind 

speeds to equivalent power using a standard IEC2 power curve.  Most of the WFIP forecast skill analysis 

compares model forecast at point tower locations, appropriate for an individual wind plant that fits 

within a single model grid cell.  For some applications one would instead be interested in comparing 

spatially averaged power forecasts with spatially averaged model forecasts, for example if a number of 

dispersed wind plants were feeding power into a transmission line, and the overall power flowing 

through that transmission line is the quantity of interest.  Spatially averaged forecast skill has been 

investigated for the NOAA RAP model.   Also, as part of WFIP, NOAA in collaboration with DOE and 

private industry partners, developed a ramp metric tool that identifies wind ramp events, matches 

forecast and observed ramps, and calculates a skill score for the forecasts.   Finally, a physical process 

study was carried out to investigate the relationship of hub-height winds on surface heat and 

momentum fluxes, and to evaluate the applicability of flux-dependent wind profile laws at replicating 

the wind profiler through the wind turbine rotor layer.   

 

A summary of the specific scientific results from WFIP follows.    

 

Percent MAE improvements between the NWS RUC operational hourly-updated forecast model and the 

real-time NOAA/ESRL RAP hourly-updated forecast model, calculated over the first 6 months of the 

WFIP field campaign, were significant.  In the Northern Study Area (NSA) a 13% power improvement at 

forecast hour 01 was found, decreasing to a minimum improvement of 6-7% for forecast hours 7-15.  In 

the Southern Study Area (SSA) a 15% power improvement at forecast hour 01 was observed, decreasing 

to a minimum improvement of 5% at forecast hour 15.  This improvement reflects the combined effects 

of the better RAP model versus the RUC model, as well as the contribution from assimilation of the WFIP 

observations into the research RAP model.  

 

To quantify the impact of assimilation of the additional WFIP observations only, data denial (DD) 

experiments were run with the RAP and NAM models.  In these experiments a set of control simulations 

was run that did not assimilate any of the special WFIP observations, which was then compared to an 

experimental simulation that did assimilate the WFIP observations.  Six DD episodes were run, each 

from 7-12 days long, spanning all four seasons of the year.  Using conventional statistical analysis with 

the tall tower data sets for verification, the experimental simulations were found to improve the 

average  MAE power forecast skill at the 95% confidence level for  the first seven forecast hours in the 

NSA, and through forecast hour 03 in the SSA.  This improvement ranged from 8% at forecast hour 1 to 
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3% at forecast hour 6 in the NSA, and from 6% at forecast hour 1 to 1% at forecast hour 6 in the SSA.  

Positive forecast skill improvement remained until the last forecast hour 15 in both study areas, but at 

levels less than 2%.  Although the NAM DD simulations were only run for two episodes (December and 

January) the results are fully consistent with the findings from the RAP model over the larger data set.  

The forecast skill improvement due to assimilation of the new WFIP observations was also found to be 

dependent on the location of the verifying site.  Verifying tower sites that were on the periphery of the 

NSA and SSA domains had smaller improvements than those located within the core observing network 

area, demonstrating the increased benefit of having more observations spread over a larger geographic 

area.  

 

 

The dependence of the forecast percent improvement on season, verification time of day, and observed 

power was investigated.  Although the magnitude of improvement varied considerably between the 6 

DD episodes, no clear seasonal trends across both study areas was evident.  This suggests that the 

variability was more related to sampling issues than to meteorological characteristics of the different 

seasons.  In contrast, the forecast improvement was found to depend strongly on the hour of the day 

that the forecast was verified at.  In the NSA the largest improvements were observed during the 

daytime hours, with considerably smaller improvements during the nighttime hours.  In the SSA the 

diurnal variation of the improvement was less clear, with a suggestion of two maxima, one also in the 

early daytime hours, with the second in the night. The power MAE itself was also found to have a strong 

diurnal signature.   In both study areas the lowest MAE was associated with forecasts that were 

initialized and verified during the daytime hours.  MAE during the nighttime hours was significantly 

greater (up to a factor 2), reflecting the fact that the stable boundary layer and evolution of the 

nocturnal low level jet is poorly understood and modeled, and is an area in need of further study and 

investigation.   In terms of dependence on the observed power, the power forecast improvement had at 

most a small variation, with slightly larger improvement for larger observed power.   

 

The dependence of the forecast improvement on the size of the forecast error was also investigated.  

For positive forecast errors (when the model forecasts more power than later materializes) no obvious 

dependence on forecast error is found.  For negative forecast errors (when the model under-forecasts 

the power), the improvement is greatest for smaller forecast errors, decreases with increasing size of 

the error, and becomes negative for the most negative errors.  The reasons for the negative impact of 

the assimilated data on the largest power under-forecasts are not understood, and require further 

investigation, including analysis of the types of meteorological phenomena associated with these 

events. 

 

The degree of spatial averaging of the forecasts and observations before they are compared is found to 

have a profound impact on the skill of the forecast, with the power MAE decreasing by more than a 

factor of 2 as the spatial averaging goes to the maximum possible.  This demonstrates the advantage to 

ISO’s of having spatially distributed generation, not only because it provides less variability in 

generation, but also because the generation that is produced can be better forecast.   Surprisingly, the 
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impact of assimilation of the new WFIP observations measured as a percent improvement stays 

constant or even increases with the degree of spatial averaging, up to domains on the order of 400 km x 

600km.  

 

The skill of the RAP model at forecasting ramp events was studied with the ramp tool developed for 

WFIP, using data from 6 DD episodes for which 15 min model output was available.  The model was 

found to have greater forecast skill for longer duration ramps, but the skill was only marginally 

dependent on the magnitude of the ramps.  The lack of skill at forecasting short duration ramps is likely 

due to the fact that these events also span a small spatial scale, making it difficult for the 3dvar data 

assimilation scheme to represent them in the model’s initialization.  Research into more advanced data 

assimilation techniques may provide greater skill for these small scale/short duration ramp events.  

 

Assimilation of the special WFIP observations was found to improve the ramp forecast skill, averaged 

over the first 9 forecast hours, by more than 10% in the NSA, but only 3.5% in the SSA.  The difference 

between the two study areas is consistent with that found for conventional MAE statistics. Reasons for 

the greater impact of the special WFIP observations in the NSA than in the SSA are, first, the NSA had 

more tall tower observations, more wind profiler observations, and the addition of nacelle anemometer 

observations; the greater numbers of observations is likely to have contributed to the greater 

improvement in both conventional MAE and ramp forecast skill. Second, the new observations were 

spread over a wider geographic area in the NSA than in the SSA, allowing for the model initial field 

improvements to be more robust and affect a wider area, thereby having a more lasting positive impact 

before advecting out of the study area.  Third, a larger number of synoptic scale systems in the NSA may 

also have contributed to the larger impact of the new observations in the NSA relative to the SSA. 

 

The degree of ramp forecast skill improvement also varied considerably between DD episodes, 

especially in the SSA.   Most of the improvement was found to come from correctly forecasting up ramp 

events and down ramp events with greater accuracy, as opposed to decreasing the penalty from 

forecasting a ramp when one of the opposite sign occurs.  The lack of improvement for these opposite 

sign forecasts may be because these events are of short duration and small spatial scale, which makes 

them difficult to assimilate into the models, so that the models have little skill in forecasting them.  

 

In the final component of the analysis, estimating hub height wind speeds using stability dependent flux-

profile relationships was found to be problematic in stable conditions, when hub-height winds can 

decouple from surface forcing.   It seems likely that there is a fundamental limit to the accurate 

extrapolation of near surface speeds to hub-height in stable conditions without other supporting 

information on the depth of the stable boundary layer and height and strength of the low-level  jet. 

 

In summary, it is clear that significant improvements to hub-height wind forecasts have been achieved 

during WFIP from both improved weather forecast models, and by assimilating additional observations 

into those models.   The development of the ability to assimilate nacelle and tall tower observations 

from the wind energy community is a significant benefit from the WFIP project, given that more wind 
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plant operators are routinely making their data available to NOAA.   The WFIP project should help 

accelerate the ingest of these observation types into the operational RAP and NAM models. 

 

Looking forward, key areas of research that WFIP has identified are first, to improve the accuracy of 

meteorological observations from existing instruments, and to develop inexpensive sensors that can 

provide the required measurements and be deployed in wide networks.  Future research also will be 

necessary to evaluate the impact of new observations in complex terrain or coastal areas: will they have 

a greater or lesser effect than in the Great Plains?  Also, research is needed to determine which type of 

instrument has the largest impact, and what deployment density of observation is optimal.  If the new 

observations span ever larger geographic domains, how large of an improvement can they eventually 

contribute and over what length of forecast?  In terms of model improvements, the stable nocturnal 

boundary layer remains a forecast weakness.   Low-level jets contribute to the high wind resource of the 

Great Plains, and the inability to forecast these well contributes to the larger model errors found at 

night.  Improving forecasts within the nocturnal boundary layer will require new physical 

parameterization schemes of fundamental processes such as turbulent mixing, as well as better model 

initial conditions. Better model initial conditions will require not only better observations, but perhaps 

equally important, better methods to assimilate observations in the stable boundary layer, so that the 

full benefit of new observations can be achieved.  
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Appendices 
 

Appendix 1. Automated Quality Control Algorithms 
 
Ground clutter interference is caused by physical elements such as power lines or trees that shake in the 

wind and are measured most often by the side-lobes of the radar antennae, giving small but non-zero 

speeds that will create a low bias in the profiler wind speeds. Ground clutter is generally worse in the 

lowest gates, its effect decreasing with height.  Ground clutter was identified based on the assumption 

that near the surface the true wind speed should increase with height.  Using the 10m wind speed 

measured by a prop-vane at each profiler site as a reference, periods when both                 and 

             were identified as likely contamination and eliminated, where U(z) is the radar speed at 

height z,  and      .  The lower wind speed threshold was applied because in near-calm conditions 

the true wind profile may not increase with height by much, if at all, and clutter is less likely to occur. 

This algorithm was implemented at all of the WPR radar sites.  One site, VLC, had extremely bad clutter, 

and for it a lower wind speed threshold of 1.5 ms-1 was used, and a value of A= 1.2.  

 

Radio frequency interference is typically caused by cell-phone transmission that occurs near the 915 

MHz wind profiler frequency.   Like ground clutter, RFI typically causes low wind speeds, however 

contaminated speeds generally start above the lowest few gates and can affect any level.  This algorithm 

compares speeds between two levels, starting with the lowest two gates.  If the speed in the upper of 

the two gates was less than 5 ms-1, and the speed decreased with height by more than 1 ms-1 between 

the two gates, the upper gate was identified as being contaminated by RFI and eliminated.  The 

procedure was then repeated always comparing the next highest gate with the last gate that was 

deemed to have good data.  In relatively rare cases where RFI affected the first gate, those bad data 

were eliminated by the ground clutter algorithm.  

 

RFI can also contaminate the RASS temperature measurements.  The characteristics of contaminated 

RASS temperatures are that they have a nearly constant value at multiple heights within a single 

measured profile.  An algorithm was developed that searched for contaminated values by binning the 

gated RASS temperatures within a profile, where each bin had a narrow range of 0.2 C.  If more than 4 

values occurred in any single bin, those 4 values were eliminated from the profile.  
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Appendix 2. Instrument Inter-comparisons 
 
Scatter plot inter-comparisons are included in this Appendix for each of the 6 data denial episodes, using 

the fully QC’d data that was assimilated into the models.  

 

 
Figure A1.  Wind profiling radar and sodar inter-comparisons for the Nov 30 – Dec 06, 2011 Data Denial 
episode.  
 

 
 
Figure A2.  Wind profiling radar and sodar inter-comparisons for the Jan 07 – Jan 15, 2012 Data Denial 
episode.  
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Figure A3.  Wind profiling radar and sodar inter-comparisons for the April 14 – April 25, 2012 Data Denial 
episode.  
 
 
 

 
Figure A4.  Wind profiling radar and sodar inter-comparisons for the Jun 09 – Jun 18, 2012 Data Denial 
episode.  
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Figure A5.  Wind profiling radar and sodar inter-comparisons for the Sept 16 – Sept 25, 2012 Data Denial 
episode.  
 
 

 
Figure A6.  Wind profiling radar and sodar inter-comparisons for the Oct. 13-20, 2012 Data Denial 
episode.  
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TCP - Transmission Control Protocol 
TM - TMXX is the model initialization time minus XX hours 
TTU – Texas Tech University 
UOPP - Under/Over Prediction Penalty 
UTC - Universal Time Coordinate, or Greenwich Mean Time 
QC – Quality Control 
WFIP – Wind Forecast Improvement Project 
WL – ramp window length 
WPR – Wind Profiling Radar 
WRF-ARW - Weather Research and Forecasting model, Advanced Research Weather version 
3DVar – Three-dimensional variational data assimilation 
 

 

 

 




