Vehicle Technologies Office

BAT343: Silicon and Intermetallic Anode Portfolio Strategy Overview

Brian Cunningham (DOE)

Overview

- Vehicle Technologies Office Energy Storage Overview
- Cost Scenarios for Different Chemistries
- VTO Roadmap
- Silicon Anode Key Results
- Silicon Anode Focus Areas
- Questions?

VTO Energy Storage R&D Overview and Strategy

CHARTER: Develop battery technology that will enable large market penetration of electric drive vehicles

Cost Goal: \$100/kWh_(useable)

Energy Storage R&D

Battery Materials Research (BMR)

Applied Battery Research (ABR)

Battery Development

Battery Testing,
Design, & Analysis

What Chemistries Can Help Meet DOE's Cost Goal?

Projected Cost for a 100kWh_{Total}, 80kW Battery Pack

These are best case projections: all chemistry problems solved, performance is not limiting, high volume manufacturing, does not include extreme fast charge capability.

VTO R&D Materials Roadmap

Current emphasis: The development of high voltage cathodes and electrolytes coupled with high capacity metal alloy anodes. Research to enable lithium metal-Li sulfur systems.

DOE Vehicle Technologies Battery R&D Roadmap

GOAL: Research new battery chemistry and cell technologies in order to reduce the cost of electric vehicle battery packs to less than \$100/kWh by 2028 (cost parity with ICE).

Graphite/High Capacity Cathode

- Higher cathode capacity
- Low/no Cobalt
- Recycling & fast charge

Silicon/High Capacity Cathode

- Higher anode capacity
- Cycle/calendar life
- Fast charge

Lithium-Metal & Li/Sulfur

- Solve cycle life/ catastrophic failure
- reduce excess lithium and electrolyte

Targets

- 1,000 + mAh/g
- 10 years & 1000 cycles

Challenges

Renewable Energy

- Large first-cycle irreversible loss
 - Low cycle and calendar life / High capacity fade

Targets

- 1,000 + mAh/g
- 10 years & 1000 cycles

Challenges

Renewable Energy

- Large first-cycle irreversible loss
- Low cycle and calendar life / High capacity fade

Targets

- 1,000 + mAh/g
- 10 years & 1000 cycles

Challenges

Renewable Energy

- Large first-cycle irreversible loss
- Low cycle and calendar life / High capacity fade

Targets

- 1,000+ mAh/g
- 10 years & 1000 cycles

Challenges

- Large first-cycle irreversible loss
- Low cycle and calendar life / High capacity fade

Targets

- 1,000+ mAh/g
- 10 years & 1000 cycles

Challenges

- Large first-cycle irreversible loss
- Low cycle and calendar life / High capacity fade

Targets

- 1,000 + mAh/g
- 10 years & 1000 cycles

Challenges

- Large first-cycle irreversible loss
- Low cycle and calendar life / High capacity fade

VTO Energy Storage R&D Overview and Strategy for Silicon

CHARTER: Develop battery technology that will enable large market penetration of electric drive vehicles

Cost Goal: \$100/kWh_(useable)

Energy Storage R&D **Applied Battery Battery Battery Testing**, **Battery Materials** Research (BMR) Design, & Analysis Research (ABR) **Development** Cathode lead Top cover Safety vent and CID **SEISta** (PTC) Gasket Separator **USABC** Silicon Deep Dive **FOAs** Cathode Anode