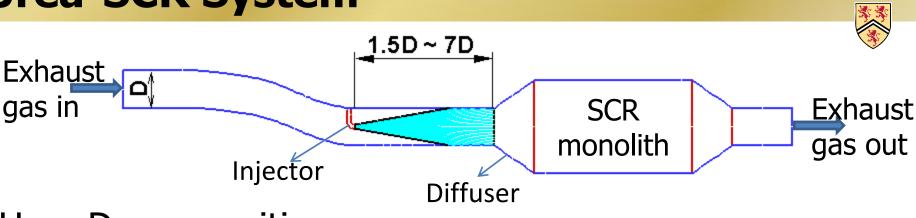


Recent Advances and Future Challenges in the Modeling and Simulations of the injection of Urea-Water-Solution for Automotive SCR Systems

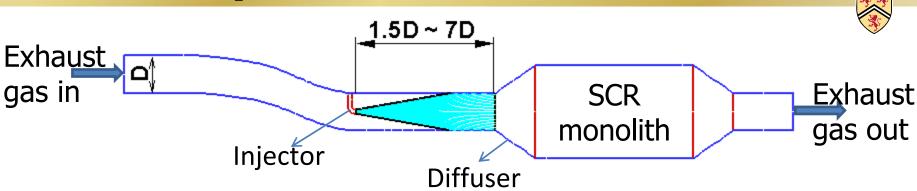

Ehab Abu-Ramadan and Xianguo Li

Mechanical and Mechatronics Engineering Department

University of Waterloo

Urea-SCR System

Urea Decomposition


Evaporation $(NH)_2 CO(aq) \rightarrow (NH)_2 CO(s \text{ or } l) + 6.9H_2O$ Thermolysis Tu> 405K $(NH)_2 CO(s \text{ or } l) \rightarrow NH_3(g) + HNCO(g)$ Hydrolysis $HNCO(g) + H_2O(g) \rightarrow NH_3(g) + CO_2(g)$

Tu> 573K, Second decomposition stage leading to the formation of melamine

Waterloo

Urea-SCR System

NOx Reduction Mechanism

Standard $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$

Fast $4NH_3 + 2NO + 2NO_2 \rightarrow 4N_2 + 6H_2O$

Waterloo

System Requirements & Challenges

- Homogenous gas mixture at the catalyst entrance with $NH_3/NOx = 1$
 - Efficient decomposition and spatial distribution of the reducing agent
- Minimization of Urea deposition on the exhaust pipe upstream of the catalyst
- Challenges
 - Short residence time (\approx 0.09) \rightarrow incomplete urea $decomposition^1$
 - Varying operating conditions

Waterloo

1. M. Koebel et al, Catal. Today 59 (2000) 335

Optimization of the UWS injection/dosing system to maximize the decomposition efficiency while minimizing wall depositions at varying operating conditions

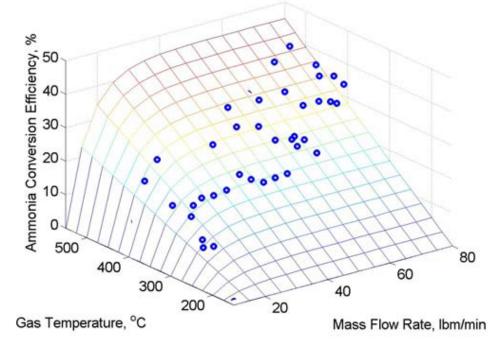
CFD Role

- Validated CFD model is required for fast, efficient optimization of the UWS injection and decomposition processes
- Model requirements
 - Predict the interaction between the exhaust gas and UWS spray
 - Account for the interaction between the spray and exhaust walls
 - Accurately simulate the UWS decomposition process

Developing such a CFD model is the main objective of this work

General Modeling Guidelines

- Eulerian-Lagrangian approach
- Continuous phase (Exhasut Gas)
 - − RNG k-ε model
- Dispersed phase (UWS droplets)
 - Necessary forces: Drag and buoyancy forces
 - Dynamic drag model
 - Taylor Analogy Breakup (TAB) model
 - Turbulent dispersion: Stochastic particle tracking
- Two-way coupling between droplets and gas phase
 Sensitive to the quality of the turbulence model
- Regime map for spray/wall interaction



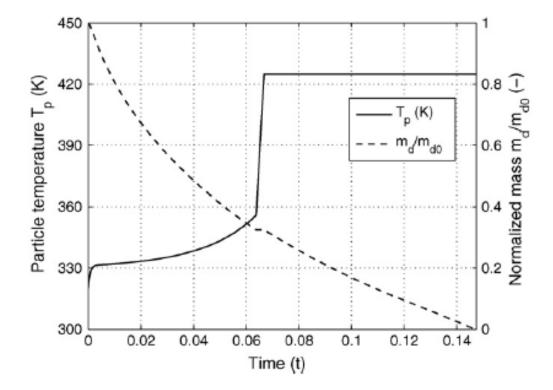
Decomposition Modeling Techniques 1 Waterloo

- Empirical conversion efficiency factor¹
 - No spray/system interaction
 - Reliability at lower gas temperatures
 - Adequate for validation purposes

Ammonia Conversion Efficiency at 10 feet from Injection Location

1. J.N. Chi, H.F.M. DaCosta, SAE Technical Paper 2005-01-0966

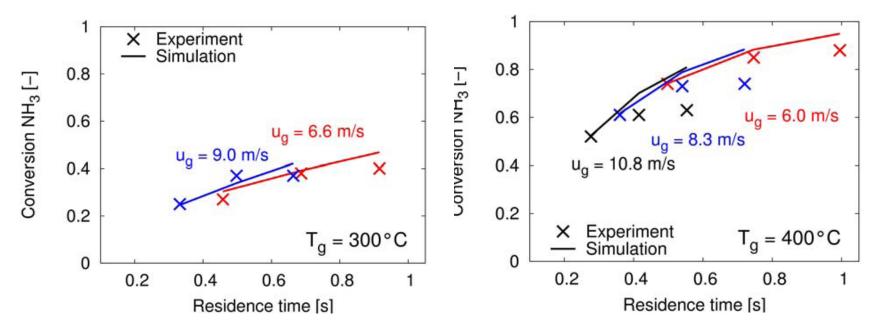
Decomposition Modeling Techniques 2 Waterloo


- Controlled by turbulent mixing (Eddy-Dissipation Model)^{1,2}
 - Overestimates the conversion efficiency
 - Lacks validity assessment
 - Limited to steady state conditions
 - Sensitive to the quality of turbulence model's prediction
 - Relatively fast and inexpensive

- 1. S.J. Jeong et al., Environ. Eng. Sci. 25 (2008) 1017
- 2. M. Chen, S. Williams, SAE Technical Paper 2005-01-0969

Decomposition Modeling Techniques 3 Waterloo

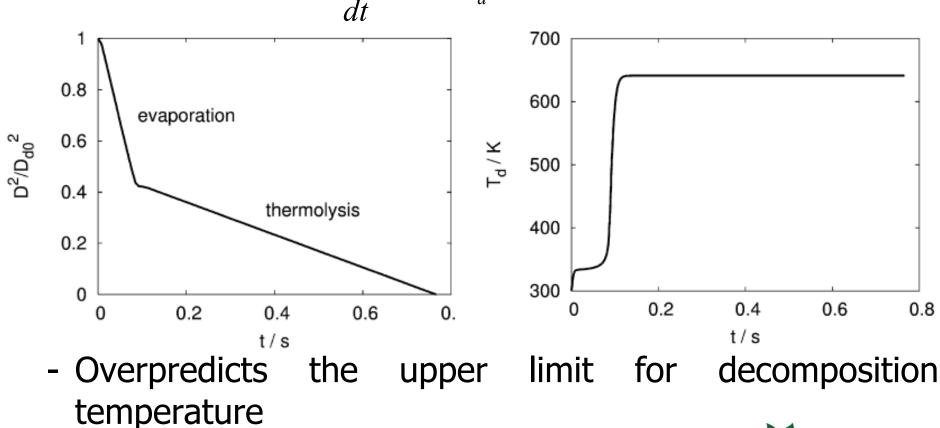
• Heat transfer limited process at $T_d = 425K$


- Neglects hydrolysis and the second stage of urea decomposition

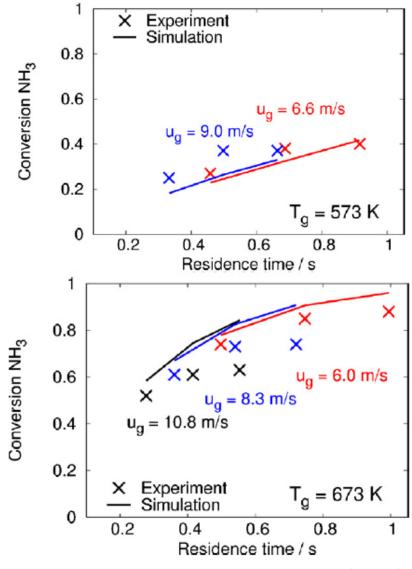
1. H. Ström et al., Chem. Eng. J. 150 (2009) 69.

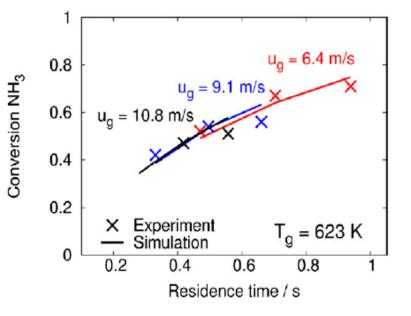
Decomposition Modeling Techniques 4 Waterloo

- Empirical saturation pressure curve¹ $p_u = e^{\frac{12.06-3992}{T_d}}$
 - Hydrolyses is incorporated by Arrhenius expression
 - Incorporates spray/wall interaction



Decomposition Modeling Techniques 5 Waterloo


• Thermolysis is modeled by Extended Arrhenius expression¹ $\frac{dm_u}{dt} = -\pi D_d A e^{\left(-\frac{E}{RT_d}\right)}$


1. F. Birkhold et al., Catal. B: Environ. 70 (2007) 119.

Decomposition Modeling Techniques 5 Waterloo

1. F. Birkhold et al., Catal. B: Environ. 70 (2007) 119

Comparison between Birkhold et al¹ calculated NH₃ and experimental data at different gas velocities and temperatures

Decomposition Modeling Techniques 5 Waterloo

Deviation may be attributed to uncertainties in reaction description

	A (Kg/sm)	E _a (J/mol)
Yim et al. ¹	4.9	5505
Birkhold et al. ²	0.42	6.9×10 ⁴

$$(NH)_2 CO(s \text{ or } l) \to (NH)_2 CO(g), \quad \Delta H = 87.4 \text{ kJ / mol}$$
$$(NH)_2 CO(g) \to NH_3(g) + HNCO(g), \qquad \Delta H = 98.1 \text{ kJ / mol}$$

- 1. S.D. Yim et al., Ind. Eng. Chem. Res. 43 (2004) 4863
- 2. F. Birkhold et al., Catal. B: Environ. 70 (2007) 119

Summary & Recommendations

- The role of CFD modeling to optimize UWS injection and decomposition was presented
- Results sensitivity to the accuracy of turbulence modeling was reported
- Various modeling techniques for UWS decomposition process was discussed
- Modifications proposed (currently under investigations)
 - The use of two layer wall treatment
 - Implementation of the two-step thermolysis process combined with the Arrhenius expression

Acknowledgment

• The work is supported by Auto21

Thank You for Your Attention

