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Diesel Emission Control

Diesel combustion systems are becoming increasingly complex and diverse 

• Lower exhaust T and higher CO/HC emissions 
• DPF and SCR systems (PM and NOX control) 
• Engine management strategies 
• Interplay between mechanical, electronic and catalytic aspects 

Pt has traditionally been the oxidation catalyst of choice 
• Good activity (CO, HC, and NO) + resistance to oxidation and poisons 
• Low thermal stability 
• Current generations utilize Pd for improved thermal stability 
¾ This strategy does not significantly alter the intrinsic activity 

We have been using our Rational Catalyst Design (RCD) methodology, which 
combines computational and experimental approaches, to identify and put into 
practice advanced catalytic materials for emission control via modification of the 
fundamental surface chemistry of metal nanoparticles 

This presentation will describe the use of our RCD approach to develop Pt
based catalysts with tailored intrinsic activity and thermally stable performance 



Physical and Chemical Interactions in a Catalytic Converter
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A. T. Bell, Science 299, 1688 (2003) 



Typical Pt-only Light-off Sequence: The Importance of CO


Development of emission control oxidation catalysts with improved performance 
starts with a detailed understanding of the CO oxidation reaction mechanism, 
identification of the limiting step, and use of methods to remove the limitation 
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CO Oxidation Kinetics on Pt-only Show CO Inhibition
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Similar to previous work done by M. Boudart, G. Ertl, and others for PGM systems




    

Elementary Steps for CO Oxidation on Pt


K1


CO + * ↔ CO*


k2 

O2 + * → O2* 

k3 

O2* + * → 2 O* 

k4 

O* + CO* → CO2 ↑ 

For a CO covered Pt 
surface, the measured 
rate is O2 adsorption (k2) 

k2[O2] 
Rate = 1+K1[CO] 

A1exp-(Eaapp/RT)[O2] 
Rate = [CO] 

Eaapp = Ea2 - ∆Hads-CO 

∆Hads-CO ~ -75 kJ/mol (at high CO coverage) 

The key to increasing the rate of CO 
oxidation on Pt is to decrease ∆Hads-CO, 
which will allow more facile O2 adsorption 

M. Boudart; G. Ertl; J. Dumesic




DFT Calculations: CO Covered Pt (111) Surface


Under typical start-up conditions (low T), CO will dominate the surface and 
prevent O2 from finding available reaction sites.  Therefore, CO must 
desorb before oxidation can take place. 
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Typical Volcano Relationship: Rate vs. Adsorption Energy


Pt 

Species that are active enough to be practically 
useful are often found in a very narrow range 



Strategy to Modify Intrinsic Pt Activity


Desired characteristics to optimize CO oxidation: 
• Lower CO adsorption energy 
• Lower O2 activation energy 

Utilizing quantum calculations, we have examined several potential promoter species 
(including non-PGM systems) to study their impact on the electronic structure of Pt and 
CO-surface interactions 

Our experimental results will show: 
• Modification of reactant adsorption characteristics on Pt 
• Dramatic increase of the intrinsic CO oxidation activity 
• Demonstration of tunable oxidation performance 
• Improved activity stabilization upon thermal treatment 
• Practical viability (vehicle tests) 



DOS Calculations for Pt and Promoted Pt Show a d-band Shift


d-band 
centers 

d band shift 

The d-band center shifts lower 
in energy, resulting in weaker 
CO binding. J. Norskov has 
shown this for other systems. 



CO Adsorption Heat Map for a Promoted Pt Surface
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Exclusion of CO provides a 
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CO Oxidation Tests Show Enhanced Activity for Promoted Pt


Different promoter strategies give dramatic changes in CO light-off temperature


Fresh catalysts 
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Temperature (oC) 

Fixed-bed flow reactor, 10 °C/min, 1000 ppm CO and 10% O2 (balance He), 
10 mg catalyst + 90 mg α-Al2O3 (for dilution), 200 cc/min flow rate, GC data 
Fresh = heated in air at 500 °C 
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Up to 100 X Increase in Intrinsic CO Oxidation Activity


The turn over frequency (i.e., activity per exposed surface site) has been 
increased by ~two orders of magnitude 
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Pt-only vs. Promoted Pt CO Kinetics: CO Inhibition Removed
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Similar to Pt-only, NS32211 is positive first order in [O2] (not shown) 

¾ Rate(NS32211) ~ k2[O2] 

This is consistent with our DFT heat maps showing CO exclusion zones




Calculated CO Concentration Dependence (1000 – 2500 ppm)


Removal of the CO inhibition is desirable for advanced diesel combustion 
systems having higher engine out CO concentrations 

For Pt-only, light-off 
increases with higher CO 
mass flow rate and 
decreased reaction rate 
from higher [CO] 

For NS32211, light-off 
increases only with higher 
CO mass flow rate (no 
rate change with [CO]) 
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Laboratory Synthetic Exhaust: Pt-only vs. Promoted Pt
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Fixed-bed flow reactor, 10 °C/min, 1000 ppm CO, 105 ppm C3H8, 245 ppm C3H6, 

450 ppm NO, 10% CO2, and 10% O2 (balance He), 15 mg catalyst + 85 mg α-Al2O3, 

300 cc/min flow rate, MS and NOx analyzer data

Fresh = heated in air at 500 °C
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Synthetic Exhaust: Superior and Tunable Fresh Performance 
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1 

Synthetic Exhaust: Increased Performance Gap After Aging


Aged at 750 °C for 20 h with H2O (10%) in air
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Vehicle Evaluations: Pt-only vs. Promoted Pt


• Vehicle: US LDD (2005 model year) 
• 2.0 L 

160• 1 L catalyst (~1/2 OE volume) 

• Catalyst moved underfloor 120 

Vehicle Speed 

Inlet Temperature 

300 

• PGM = 2 g/L Pt
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• Test: European MVEG

80 200 

• Ultra-low sulfur fuel (<15 ppm)

40 100 

• Testing done at a certified facility  
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• Engine Aging: 
• 2 mode cycle with fuel injection 
• Maximum temperature of ~650 °C 
• Aged for 20 h 
• Low sulfur fuel (<50 ppm) 
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LDD Engine-out Data


[CO] Range: 500 to 3000+ ppm, [THC] range: 100 to 800+ ppm 
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Vehicle Bag Data Show a Significant Advantage for Promoted Pt


24-28% lower fresh emissions and 43-45% lower aged emissions @ 2 g/L Pt 
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CO Efficiency Data Show Earlier CO Light-off for Promoted Pt
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THC Efficiency Data Also Show Earlier Light-off for Promoted Pt
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Summary 

• We have developed a new family of Promoted Pt catalysts that have superior 
low temperature activity, performance stability, and tunable NO conversion 

• These materials provide significant opportunity for metal cost savings and 
performance enhancement in advanced diesel combustion systems 

• Rapid progress was facilitated by use of Nanostellar’s Rational Catalyst 
Design methodology          Combining computational and experimental 
resources to enable advanced material discovery 
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