Powertrain Trends and Future Potential

Dr. Johannes-Joerg Rueger Sr. Vice President, Robert Bosch

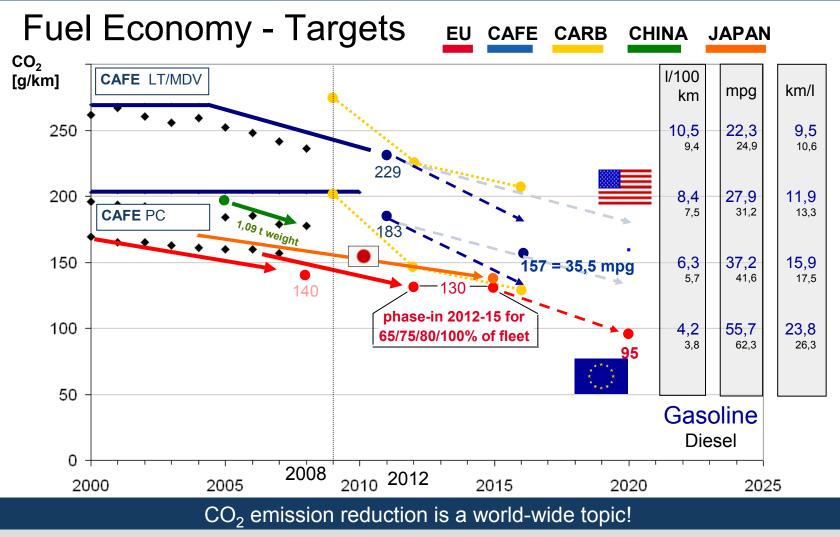
Automotive Technology

BOSCH

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Panel "New Directions in Engine and Fuels" DEER Conference, Dearborn, August 4, 2009

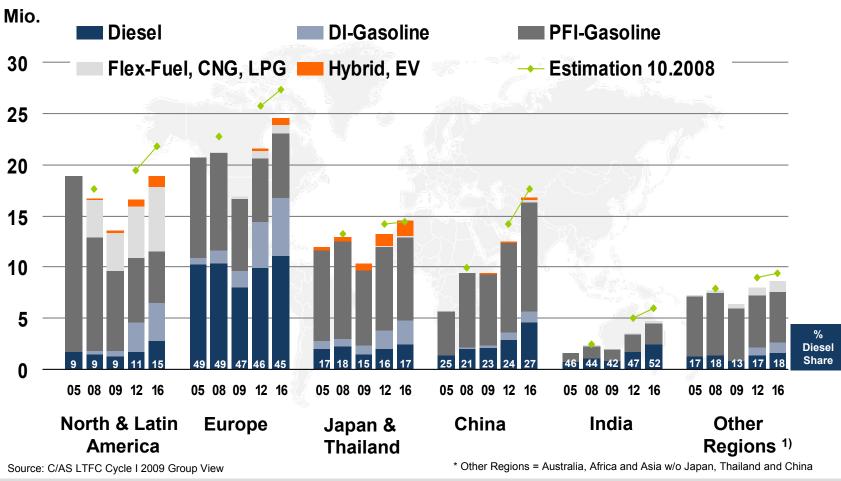
Agenda


Global Trends – Fighting Global Warming

- Future of Powertrain Systems Efficient CO2 reduction @ reasonable costs
- Clean Diesel Neglected in the U.S. for Too Long

Automotive Technology

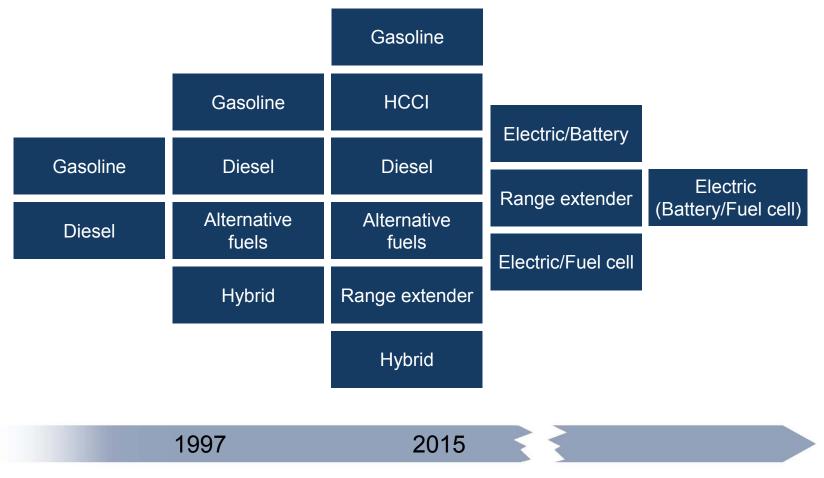
Worldwide Powertrain Trends


Automotive Technology

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Worldwide Powertrain Trends

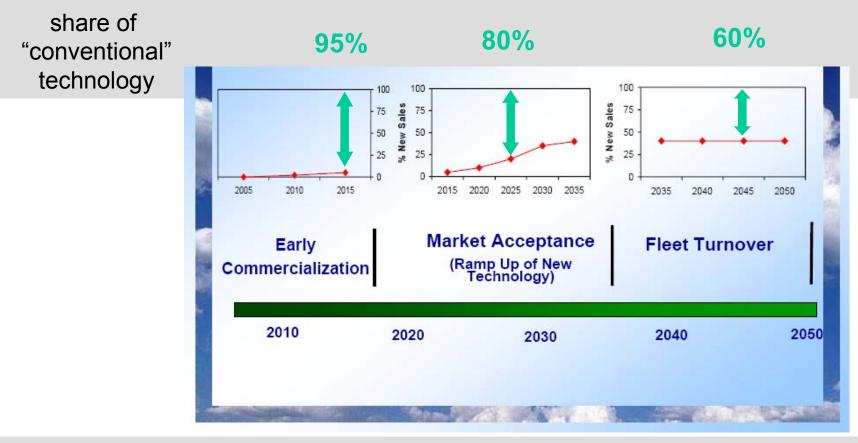
Production: Vehicles World by Region



Automotive Technology

DI-Gasoline = Direct Injection Gasoline; EV = Electric Vehicle; CNG = Compressed Natural Gas; LPG = Liquified Petroleum Gas

Powertrains for Passenger Cars – Timeline



Automotive Technology

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

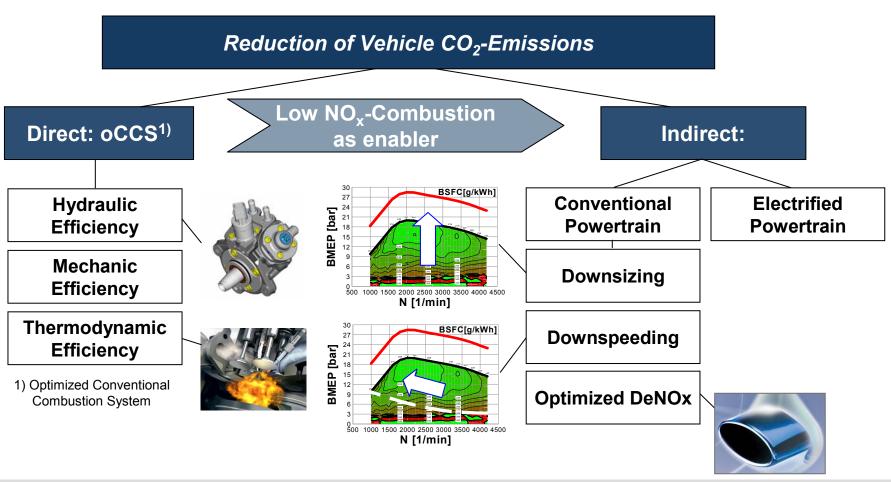
CARB Scenario for the Introduction of Electric Cars

from: Cackette, California Air Resources Board, January 2009

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Automotive Technology

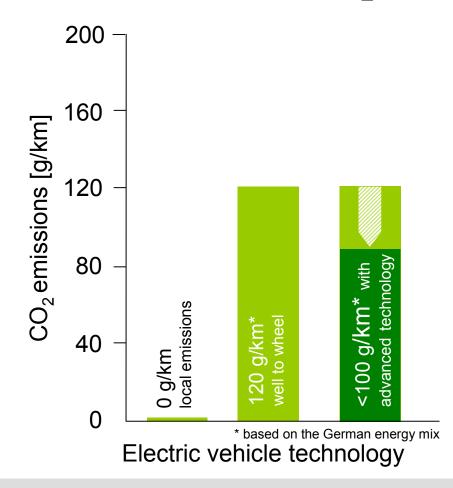
Agenda


- Global Trends Fighting Global Warming
- Future of Powertrain Systems –
 Efficient CO2 reduction @ reasonable costs
- Clean Diesel Neglected in the U.S. for Too Long

Automotive Technology

Future of Powertrain Systems

Efficient Emission Reduction



Automotive Technology

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Potential and Limits of Electric Vehicles

Electric vehicle – CO_2 emissions

Vehicle weight 1000 kg, Range 200 km, Battery 35 kWh

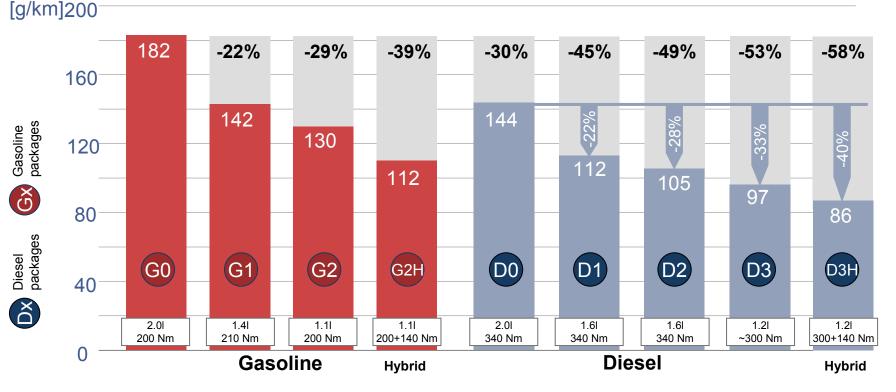
Automotive Technology

Future Potential of Conventional Combustion Engines

CO_2 Emissions (New PCs, EU15) Small Compact Gasoline Golf V 1.6 FSI [1250-1470 kg] [1470-1700 kg] Diesel (75 kW) appr. 30g/km CO2 [g/km] CO2 [g/km] Golf VI 1.4 TSI appr. 30g/km Golf V 1.9 TD (90 kW) (77 kW) Golf VI 1.6 TDI Intro of DI-Diesel Blue Motion (77 kW Upper Medium Passat Variant Medium [1700-1810 ka] 1.6 FSI (75 kW) [1810-1930 kg] appr. 40g/km SUV-impact appr. CO2 [g/km] CO2 [g/km] 50g/km Passat Variant 1.4 TSI Passat Variant 1.9 TDI-(90 kW) (77 kW) Passat Variant 2.0 TDI Blue Motion (81 kW) Year Year [Inertia Weight] Source: Polk Marketing Systems

Drastic gains achievable for both, Gasoline and Diesel technology

Automotive Technology


DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

BOSCH

Future Potential of Conventional Combustion Engines

CO₂ Emissions for Diesel & Gasoline Technologies

Compact Class, NEDC

Gasolines AND Clean Diesels provide potentials for further CO₂ reduction

Automotive Technology

 CO_2

11

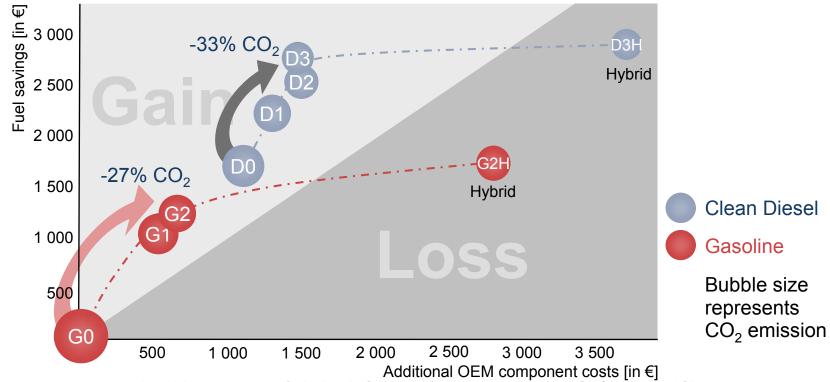
Future Potential of Conventional Combustion Engines

Evolution in Clean Diesel & Gasoline Technology

Gasoline			Clean Diesel		
Pkg.	Description	Displ. & Torq.	Pkg.*	Description	Displ. & Torq.
G0	Port fuel injection (PFI)	2.0 I 200 Nm	D0	Common rail system, turbo	2.0 I 340 Nm
G1	Direct injection (DI) ¹⁾ , turbo, downsizing, start/stop ³⁾ , thermal management	1.4 210 Nm	D1	 + oCCS (opt. Combustion) + start/stop ⁴⁾ + thermal management ⁷⁾ + downsizing ,+ close PI 	1.6 340 Nm
			D2	+ NO _x -EGT	1.6 I 340 Nm
G2	+ downsizing + var. valve lifting (VVL) ⁸⁾	1.1 200 Nm	D3	+ downsizing	1.2 I 300 Nm
G2H	+ hybrid ^{2,5)}	1.1 200+140 Nm	D3H	+ hybrid ^{2,5)}	1.2 300 + 140 Nm

Medium class car (1 400 kg), 100 kW, MT5 (manual transmission), MVEG-cycle, EU6

1) turbo-charged with downsizing and var. valve timing (VVT); 2) max. potential w/ downsizing, transmission optimization; 3) Start/Stop w/ recup., thermo management (ThM), Decos; 4) Start/Stop w/ recup., combustion optimization; 5) Battery 1.0 kWh; 6) ThM, down speeding, downsizing, T/C optimization; 7) CO₂ optimization; 8) VVL in 2-step, down speeding, downsizing; / costs 2014 / * Further Clean Diesel evolution steps D1 & D3 are not shown


Automotive Technology

12

Efficient CO2 Reduction @ Reasonable Costs

Fuel Savings vs. Additional Component Costs

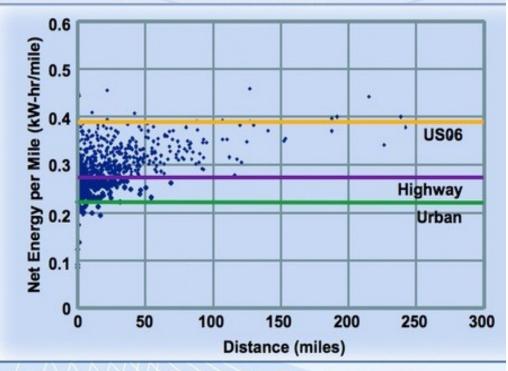
Premise: costs over 3 years at 15 000 km p.a., average fuel prices in Germany of 2006-2008: Diesel 1.20 €/I, Gasoline 1.33€/I

FE enhancement for Clean Diesels & Gasolines follows similar gradient

Automotive Technology

Agenda

- Global Trends Fighting Global Warming
- Future of Powertrain Systems –
 Efficient CO2 reduction @ reasonable costs
- Clean Diesel Neglected in the U.S. for Too Long



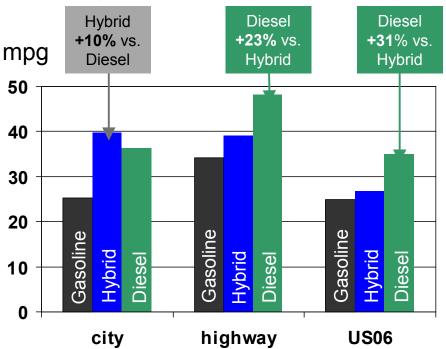
Automotive Technology

Clean Diesel – Fuel Economy and Real-world Performance

Real American Driving Profile

ZEV Power and Speed Study Result: Real World Driving

Mid-Sized Vehicle Simulated with SCAG Regional Transportation Survey Data


Automotive Technology

15

- Study based on GPSmonitored Californian mid-size sedan owners:
 - Median Californian driving intensity is between highway and US06 cycles

Emissions follow real-world driving, not test cycles

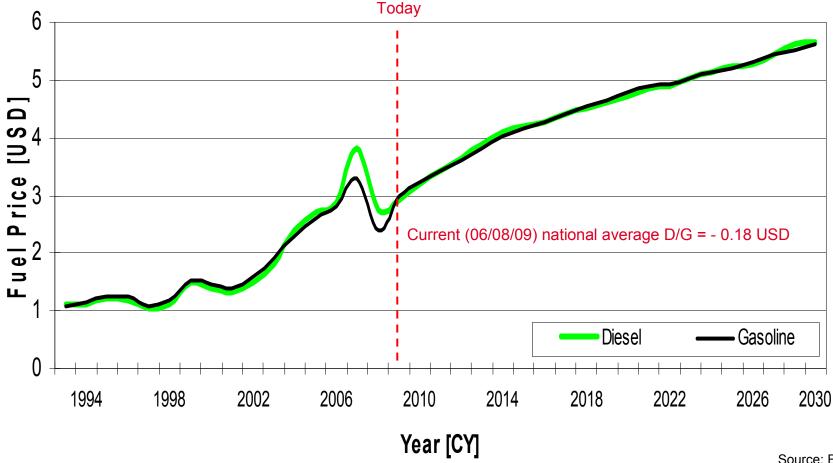
Automotive Technology

16

cycle based calculation

real-world driving

source: auto motor sport, 2008


Further potential of Clean Diesel with e.g. Start-Stop not even considered

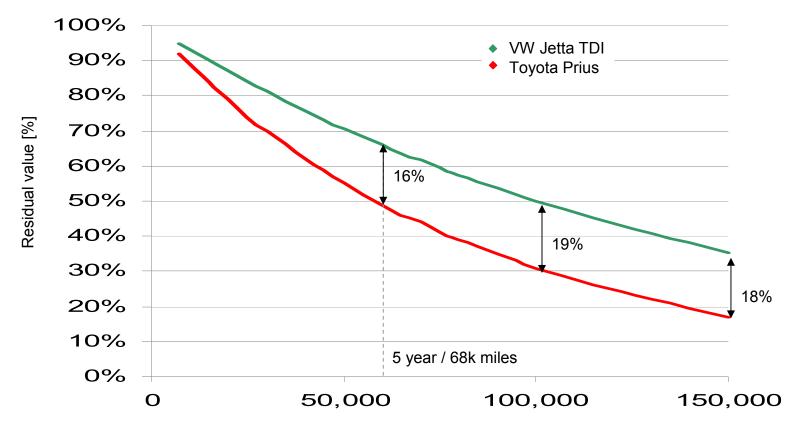
Source: simulation based on Mercedes E-class, 1700kg, combustion 110kW, electrical 31kW, Li-Ion battery, 6-speed AT

Fuel Prices – Parallel Upwards Trend

EIA Diesel/Gasoline Price History and Forecast

Automotive Technology

17


DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Source: EIA

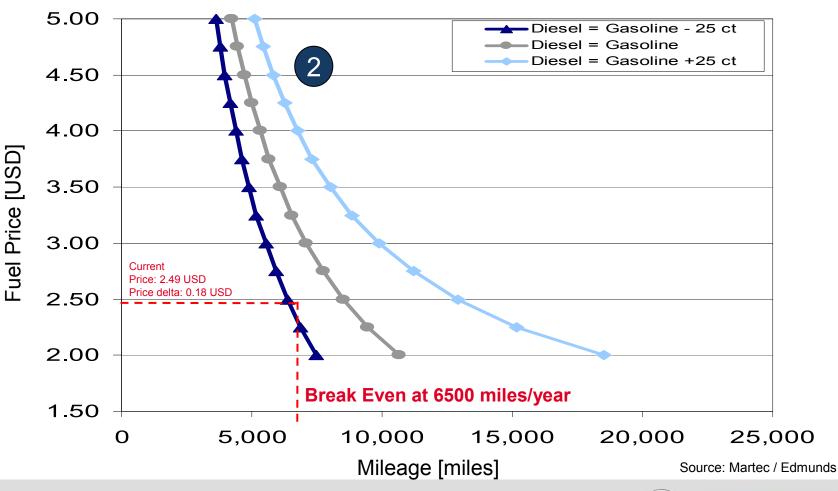
Clean Diesel – Prevailing in Total Cost of Ownership (TCO)

Auction Results (Example Jetta TDI / Prius)

Mileage [miles]

* auction data from 2006 to Mid 2008

Automotive Technology


18 DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Source: Martec / Mannheim Auto Auction

Clean Diesel – Prevailing in Total Cost of Ownership (TCO)

TCO example VW Jetta TDI

BOSCH

Automotive Technology

19

Powertrain Trends and Future Potential

Dr. Johannes-Joerg Rueger Sr. Vice President, Robert Bosch

Automotive Technology

BOSCH

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Panel "New Directions in Engine and Fuels" DEER Conference, Dearborn, August 4, 2009

