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PdAu Catalyst Effective for CO Oxidation 

• CO light-off on aged Pt catalyst delayed due to sintering 
• PdAu competes well with PtPd & Pt under fresh and aged conditions 
• PdAu catalyst shows better hydrothermal stability than Pt & PtPd 
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• Engine test show CO oxidation deteriorates more on PdAu than on Pt 
• Lab tests show CO light off delayed by 13o (C3 HCs) and 22oC (xylene) 
• HC inhibition effect linked to hydrocarbon species and its oxidation 
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Goals & Methodology 

Rational Catalyst Design Methodology 
 Light-off performance tests  
 Surface characterization techniques (DRIFTS) 
 Atomic-scale modeling (Density functional theory) 

Pt(111) 

• Mitigate hydrocarbon inhibition for CO oxidation on Pd-based catalysts 
•  Mechanistic differences for propylene (C3H6) oxidation on Pt and Pd-based catalysts 

•  Identify dopants to reduce hydrocarbon interference on Pd & PdAu 

Pd(111) PdAu(111) 
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Incomplete Propylene Oxidation on Pd-based Catalysts 

• For the 1st ramp up, propylene light off lowest for Pd 

• Comparing propylene conversion and CO2 yield difference: Pt<PdAu~Pd 
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Propylene Conversion Degrades on Pd Over Test Cycles 

• Maximum light-off performance degradation on Pd (48oC) 

• Comparing propylene conversion and CO2 yield difference: Pt<PdAu~Pd  
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Propylene Oxidation Deactivates on Pd-Catalysts Over Time 
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Oxidation by-products either on the support or blocking reaction sites 

• Measured CO2 less than the theoretical CO2 for both 
PtPd & PdAu  

• PdAu deactivates for a longer time than PtPd  
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• Pd based catalysts showed significant inhibition effects for CO/HC oxidation unlike Pt 
• Inhibition on Pd catalysts linked to presence of C=C vibration ~1600 cm-1  and C=O 

double bonds ~ 1700 cm-1  Coke and coke precursors ? 

By-Products on Pd sites during Propylene Oxidation 
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Propylene Decomposition & Oxidation on Pt(111) 

• Using Density Functional Theory to examine propylene decomposition and 
oxidation products 

• C-C scission products (C3H4) are more strongly bound on Pt as compared to 
oxygenates and aromatics 

C3H5O* C3H5* C6H6* 
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• C-C scission products (C3H4) are energetically less favored than partially oxidized species 
(C3H4O*) and polymerized species (C4H6*) 

• Formation of aromatic (C6H6*) and conjugated diene (C4H6*) is strongly preferred on Pd (Coke 
precursors) 

Propylene Decomposition & Oxidation on Pd(111) 

C3H5O* C3H5* C6H6* 
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Goal: To develop Pt-like system to overcome hydrocarbon inhibition 
   on Pd-catalysts (Screening Parameters) 

- Stabilize small hydrocarbon species 
- Destabilize coke precursors (conjugated dienes, aromatics) and    

oxygenates 
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Rational Catalyst Design Approach 

Pd 

PdAu 

Dilute ensemble to destabilize coke precursors and oxygenates while 
keeping ensemble favorable towards desired reactions 

C3H6* C6H6* C3H4O* 
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 DFT design: Surface Alloy 

Alloy Pd-X 

Pt 

Dehydrogenation 
CC breaking 
Partial oxidation 
CC coupling 

• Coke precursors and oxygenates destabilized for 
PdAu-X 

• Pd-X shows Pt-like trend for intermediates 

Pd 

Alloy PdAu-X 
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Summary 
• CO oxidation inhibited by hydrocarbons during consecutive test cycles on Pd-

catalysts unlike Pt linked to hydrocarbon oxidation itself 
• Propylene as prototype for gaining insights into oxidation mechanism 

• Pt exhibits stable propylene oxidation performance, oxides propylene 
completely to CO2 and no other by-product detected  

• Incomplete propylene combustion on Pd & PdAu, conversion degrades in 
consecutive runs 

• Light-off performance on PtPd better than Pt, Pd & PdAu but it deactivates 
over time as well 

• Oxygenate & coke determined as majority by-product on the support 
and/or accumulated over Pd sites 

• Can improve hydrocarbon decomposition by stabilizing small hydrocarbon 
species and destabilizing aromatic molecules & dienes on catalyst 

• Rational catalyst design approach (relative energy of decomposition 
intermediates) used to identify Pd and PdAu dopants which 
• Favors hydrocarbon scission products over by products 
• Reduced hydrocarbon inhibition & retain CO oxidation performance 
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