

The Next ICE Age

Michael Ruth
Director – Advanced Systems Engineering
Cummins Inc.

The more things change, the more they stay the same.

Nissan data based on FeulEconomy.gov information

Cummins Inc.

Diversified Global Power Leader – Four Complementary Businesses

Engines

Power Generation

Components

Distribution

- World's largest independent diesel engine manufacturer
- Will produce over 1M diesel and natural gas engines in 2012
- Over 60% of sales outside the U.S.
- Approximately 44,000 employees worldwide

Broad Product Range

 A major expansion of the range since the late 1990s, with twice the number of engine platforms covering 49 to 4200 horsepower

Cummins Chassis Certified Products

Light Duty Emissions Efforts at Cummins

Current Development Focus on Cost and CO₂

Sustained Progress Indeed ...

Focus Areas for All Engine Applications

Chassis Certified Engine Technology Levers

Chassis Certified Engine Technology Levers

Air Handling Optimization

Reduce emissions while maintaining the fuel economy advantage of diesel

Lube Oil

- Engine design changes to take advantage of low viscosity lube oil
 - Bearing materials and journal sizing to maintain high durability at high film pressures
- 5500 lb full sized pick-up truck

	Base 15W40	10W30	5W30	5W30 Low V	
Fuel Economy LA-4	24.6	24.6	25.0	25.9	MPG
Fuel Economy HWFET	29.6	30.0	30.0	30.4	MPG

Base Engine Design Technology

Structural Efficiency

(Firing Load * # cylinders / mass)

Direct NH₃ Delivery and Storage Catalysts

Heavy Duty Engine Technology Levers

Parasitic Reduction

Fuel System

Fuel

Variable
Valve
Actuation

Controls

EGR Loop

Materials

Turbo Technology

Aftertreatment

Waste Heat Recovery

Heavy Duty Engine Technology Levers

Parasitic Reduction

Variable Valve Actuation

EGR Loop

Turbo Technology

U.S. DEPARTMENT OF **ENERGY** **Fuel System**

Fuel

Controls

Materials

Aftertreatment

Waste Heat Recovery

SuperTruck – WHR System

U.S. Fuel Prices - \$/Gallon Diesel Equivalent Energy

Summary

- The Internal Combustion Engine has a future for personal and commercial transportation.
 - Energy costs and operational cost will drive technology choices
 - Light duty diesel has an opportunity to compete as CAFE/GHG regulations will drive the need for more technology on today's engines
 - Diesel will be capable of matching gasoline emission rates
 - New design techniques will put LD diesels on equal weight measures as gasoline
 - Low Carbon Fuels are important to the future ICE

