

New Directions in Fuels Technology

15th DEER Conference

Panel on New Directions in Engines & Fuels August 4, 2009

Ken Wright
Fuels & Regulatory Affairs Branch
Strategy, Integration & Spec. Businesses

CAUTIONARY STATEMENT

FOR THE PURPOSES OF THE "SAFE HARBOR" PROVISIONS OF THE PRIVATE SECURITIES LITIGATION REFORM ACT OF 1995

The following presentation includes forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended and Section 21E of the Securities Exchange Act of 1934, as amended, which are intended to be covered by the safe harbors created thereby. You can identify our forward-looking statements by words such as "anticipates," "expects," "intends," "plans," "projects," "believes," "estimates," and similar expressions. Forward-looking statements relating to ConocoPhillips' operations are based on management's expectations, estimates and projections about ConocoPhillips and the petroleum industry in general on the date these presentations were given. These statements are not guarantees of future performance and involve certain risks, uncertainties and assumptions that are difficult to predict. Further, certain forward-looking statements are based upon assumptions as to future events that may not prove to be accurate. Therefore, actual outcomes and results may differ materially from what is expressed or forecast in such forward-looking statements.

Factors that could cause actual results or events to differ materially include, but are not limited to, crude oil and natural gas prices; refining and marketing margins; potential failure to achieve, and potential delays in achieving expected reserves or production levels from existing and future oil and gas development projects due to operating hazards, drilling risks, and the inherent uncertainties in interpreting engineering data relating to underground accumulations of oil and gas; unsuccessful exploratory drilling activities; lack of exploration success; potential disruption or unexpected technical difficulties in developing new products and manufacturing processes; potential failure of new products to achieve acceptance in the market; unexpected cost increases or technical difficulties in constructing or modifying company manufacturing or refining facilities; unexpected difficulties in manufacturing, transporting or refining synthetic crude oil; international monetary conditions and exchange controls; potential liability for remedial actions under existing or future environmental regulations; potential liability resulting from pending or future litigation; general domestic and international economic and political conditions, as well as changes in tax and other laws applicable to ConocoPhillips' business. Other factors that could cause actual results to differ materially from those described in the forward-looking statements include other economic, business, competitive and/or regulatory factors affecting ConocoPhillips' business generally as set forth in ConocoPhillips' filings with the Securities and Exchange Commission (SEC), including our Form 10-K for the year ending December 31, 2008, as updated by our quarterly and current reports on Forms 10-Q and 8-K, respectively. ConocoPhillips is under no obligation (and expressly disclaims any such obligation) to update or alter its forward-looking statements, whether as a result of new information, future events or otherwise.

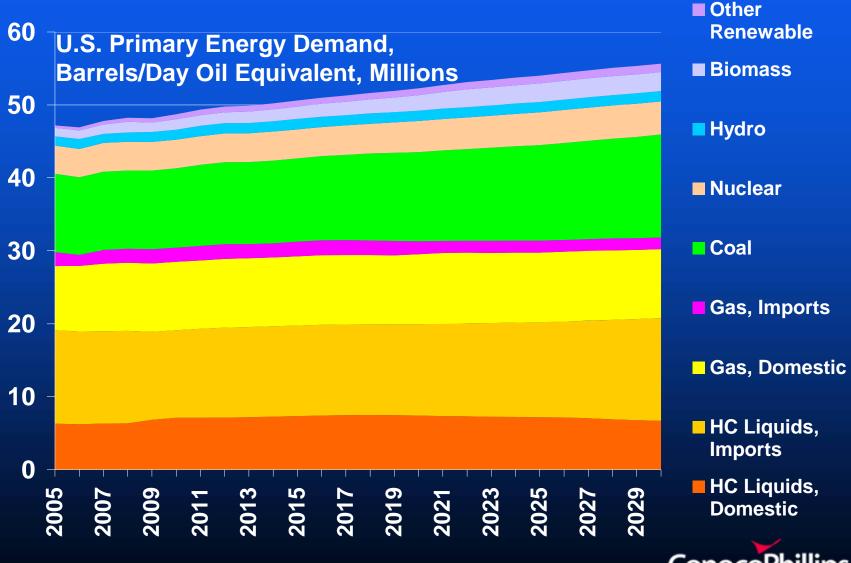
Transportation Fuels Bottom Line

- All fuels have real economic and social costs and benefits; scale matters
- Liquid fuels compatible with current powertrains & energy infrastructure are near term answer
- Energy efficient vehicles are needed regardless of fuel

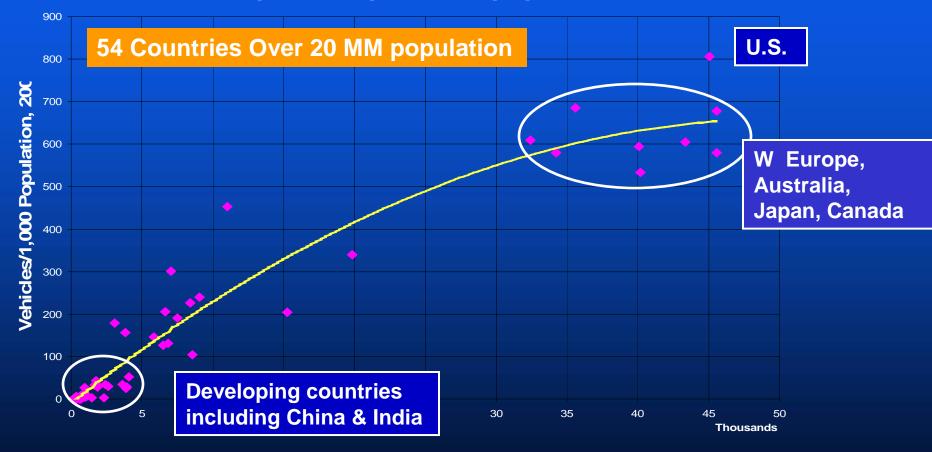
- Real commitment to improving energy security precludes taking any energy option off the table
- Long term, electricity offers primary energy diversification to transportation beyond oil & liquid biofuels
- Technology & innovation will drive the fuels of the future

All Fuels Have Pros & Cons They Become Evident at Large Scale

Selected Criteria	Petroleum- Derived Fuels	Bio-Derived Liquid Fuels	Electricity (Coal)	Hydrogen (Natural Gas)
Energy Security				
Weather Vulnerability				
In Use Fleet Compatibility				
Infrastructure Readiness				
CO2 Intensity				
Land Use Effects				



Moving Toward Energy Security Precludes Taking Energy Options Off the Table



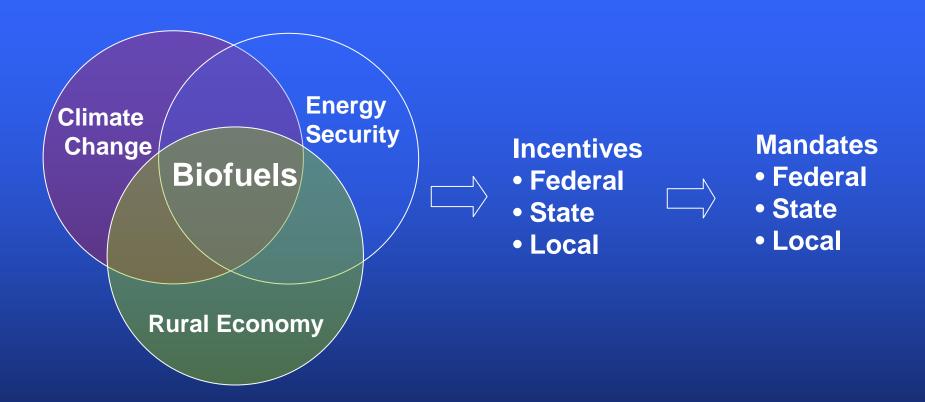
Source: AEO 2008 Revised Early Release Reference Case, March 2008

ConocoPhillips

Economic Development Enables Personal Vehicle Ownership

Vehicles In Operation per 1,000 population, 2007

GDP Per Capita, '000s UD, 2007


Sources: United Nations statistics & WardsAuto.com

Technology Focus Areas Within COP

Coal/CTL **Core Upstream** Biofuels **Alternative** Challenged Core Resources **Downstream Energy** • 1st Gen Gasification Reliability Advanced & Integrity • 2nd Gen Batteries Shale Hydrocarbon Fuels Exploration Geothermal Hydrates Coal Refinery Processing **Improvements** Solar Arctic Catalyst Evaluation • E-Gas Production Opt Wind Sulfur Removal • LNG Integrated • Syn Gas Ocean **Technology** Challenged Surveillance & • CTL • Process H₂ Fuel Cells Performance gas (tight, Enhanced Reliability Novel H₂ Improved stranded. Nuclear Recovery sour) Heavy Oil **Environmental Technology** Environment – License to Operate Water CO_2

Why Biofuels?

Biofuels are a critical <u>part</u> of the energy future, but are not the <u>only</u> solution

Quantity Challenges of Biomass

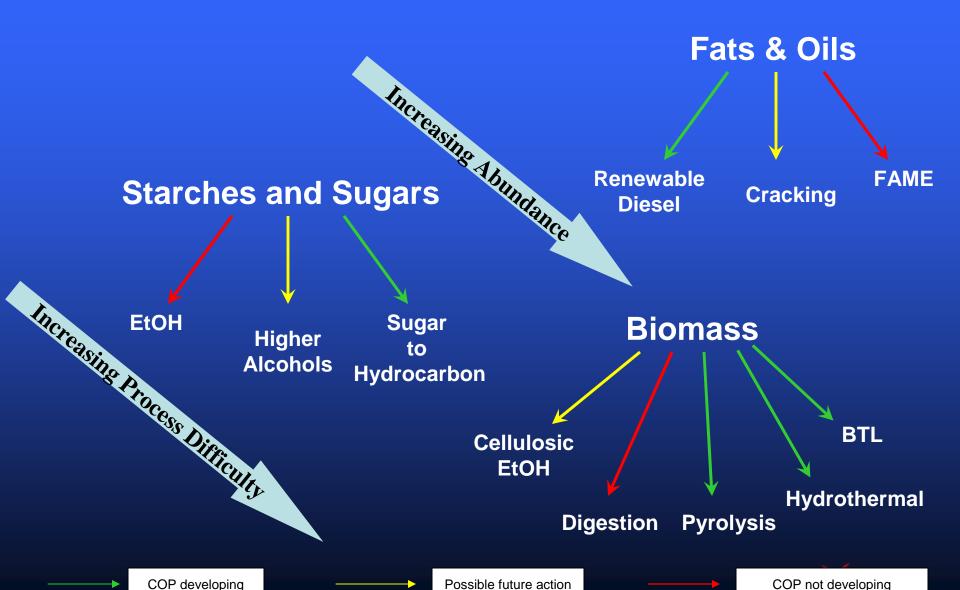
19 Bushels Corn

42 Bushels of Soybeans

2 Cows

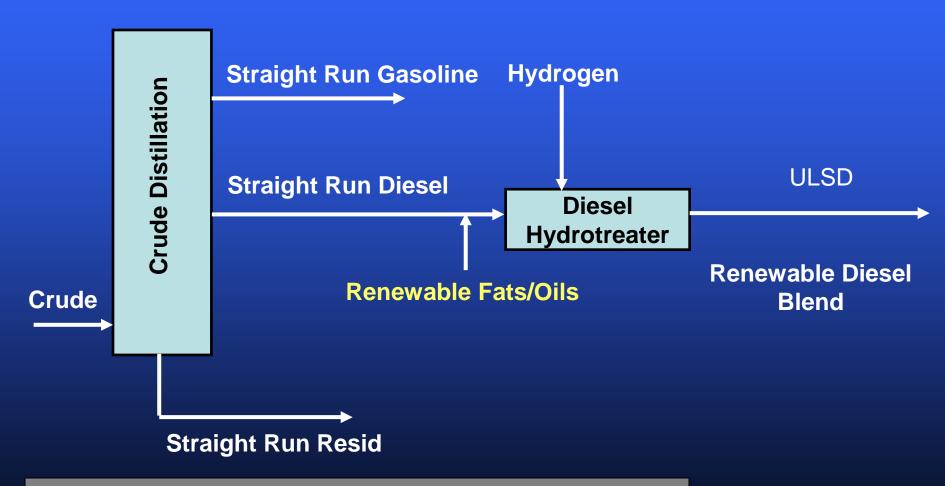
1 Barrel of Fuel

14 Pigs


900 Chickens

900 lb of biomass

Biofuel Pathways

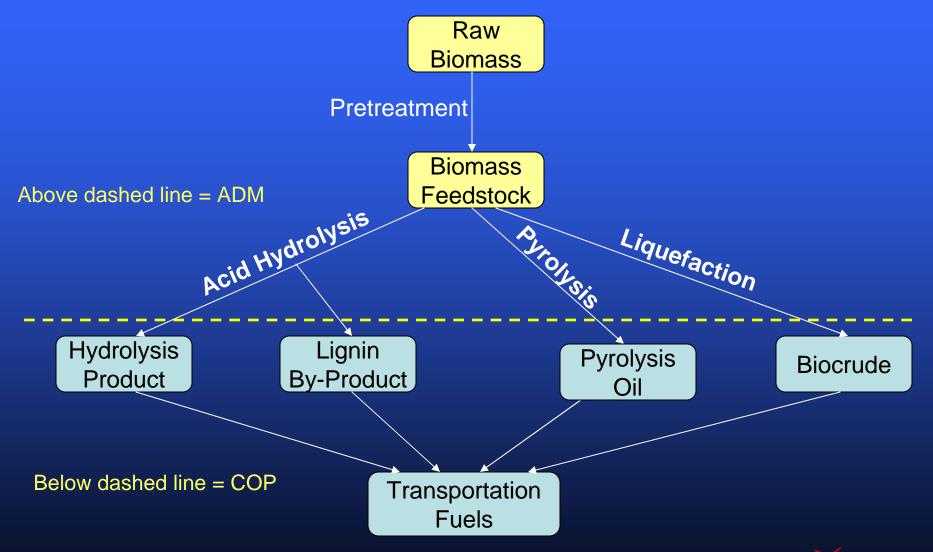


COP Funded Research Areas

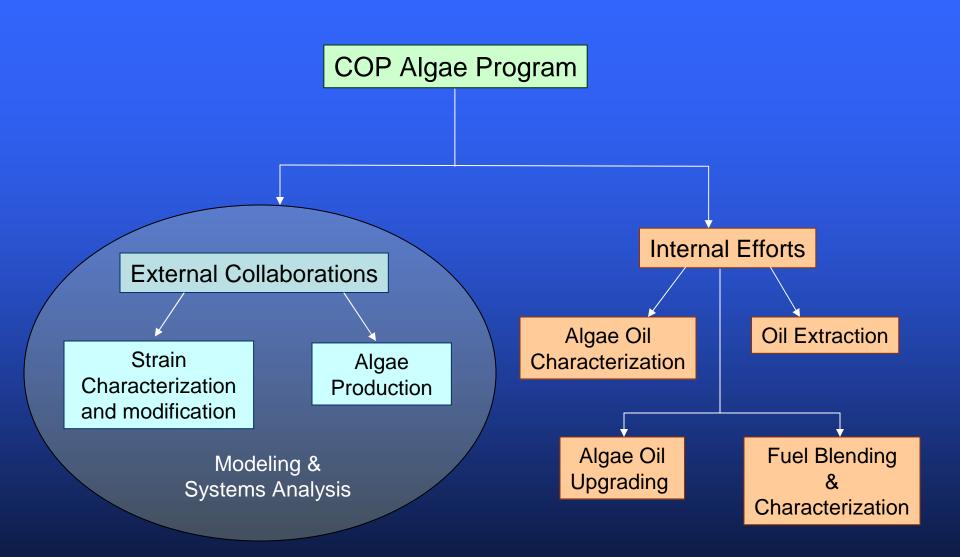
- Renewable Diesel
 - Commercialized refinery co-processing of oils/fats with distillates in 2007
- Biocrude Development Program
 - Developing technology to produce transportation fuels from biomass
 - ADM-COP joint program to commercialize technology by 2013
- COP Biofuels Algae program
 - Conducting research necessary for development of a long term position on algae as a renewable fuel feedstock
 - Leveraging internal expertise on oil extraction & oil conversion with externally sponsored algae research
 - Member of Colorado Center for Biorefining & Biofuels (C2B2) consortium
- Biomass Gasification R&D
 - Member of NREL-ISU-COP collaboration
 - Conducting multiple programs at Iowa State University through 2014
 - Plan to demonstrate integrated BTL pilot plant (0.5 TPD)
- CRC (Coordinating Research Council) Participation
 - AVFL Committee: Gasoline HCCI, diesel HCCI, E20, & biofuels research
 - FACE: Develop and characterize fuels for advanced combustion engines

Renewable Diesel Process

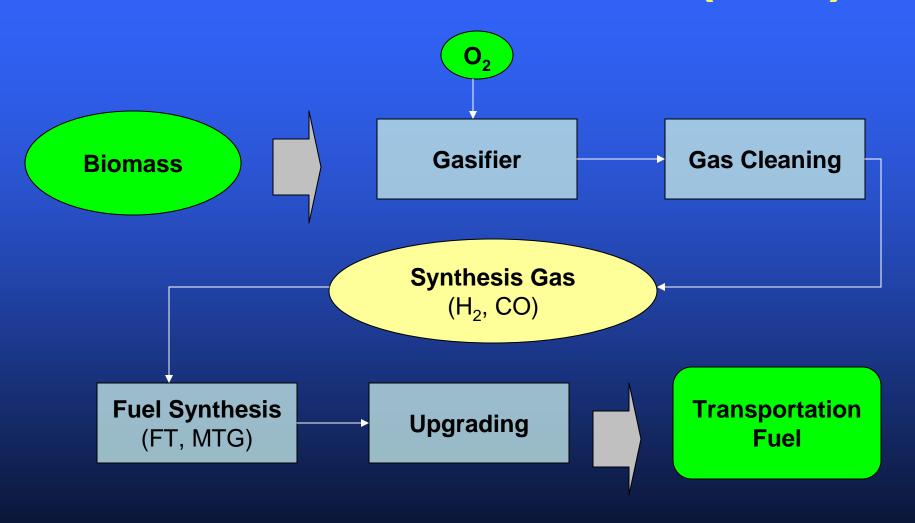
Note: Over 100 million gallons of fats and oils have been processed into renewable diesel worldwide by COP & others.



Relative CO₂ Life Cycle Emissions


	Petroleum Diesel	Biodiesel B100	Renewable Diesel R100
COP (substitution, soy)	100%	59%	44%
UOP (mass allocation, soy)	100%	43%	26%
NExBTL® (substitution, rapeseed)	100%	60%	31%
GREET Model (energy allocation, soy)	100%	32%	26%

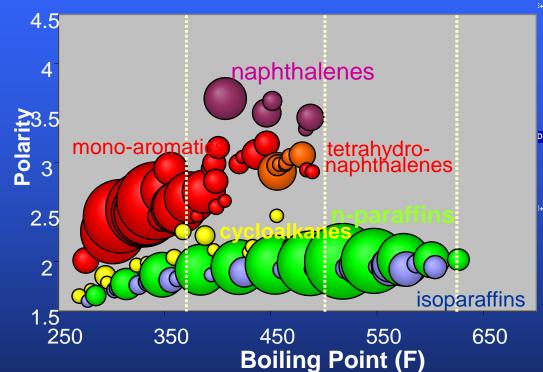
ADM-COP Biomass Conversion Pathways

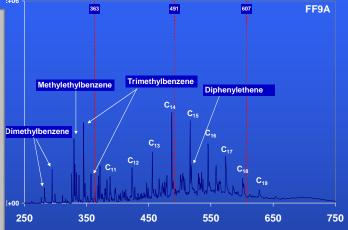


Biomass Gasification (BTL)

Closing Thoughts

How do we meet the challenges?


- Diversify supply
 - Oil, Gas, Coal will still provide most energy
 - Biofuels and Renewables are a vital part of the mix
- Improve Energy Efficiency
 - Transport, Residential and Industrial
 - Within our industry
- Develop new technologies
 - Improve conventional oil and gas
 - Recover unconventional from oil sands to shale to hydrates
 - Focus new technology to convert biomass to fuel
- Protect the environment
 - Lower the footprint of our operations
 - Address climate change issues

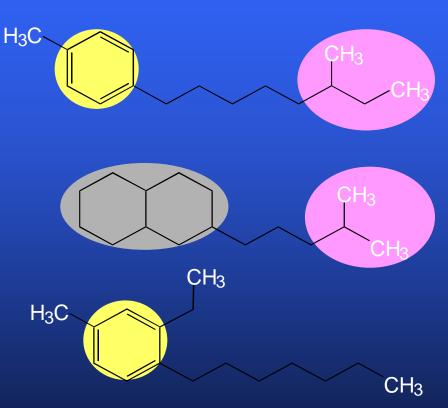


Backup Slides

Coordinating Research Council is Developing Test Fuels for advanced combustion in their FACE (Fuels for Advanced Combustion Engines) Work Group

%of total mass	n-paraffins	Iso- paraffins	Cyclo- alkanes	aromatics
0-300 °F	1.2	4.5	1.3	20.0
301-400 °F	3.1	7.3	1.7	11.8
401-500 °F	4.1	13.8	2.1	10.5
501-end °F	2.6	10.3	2.5	1.5
TOTALS	11.0	35.9	7.6	43.8

- Fuel design & individual species information.
- Info on grouping and visualization of chemical families by boiling point or carbon number.
- Data reduced to tabular form for use in correlations to combustion data.
- Example: FACE Diesel No. 9 shown here.



CRC AVFL (Advanced Vehicle/Fuel/Lubricants) Committee is testing gasoline & diesel HCCl fuels and developing new diesel surrogates

		Content (mole%)	
Carbon type		Calculated	Measured
Aromatic		25	23
Cycloparaffinic		21	25
Branched Paraf	fin	15	17
Paraffin Chain (C1+)	40	36
Olefin		0	0
C=O*		0	0
Total		100	100

Parameter	Calcul ate d	Measured
Ar Cluster size (#carbons)	6	7
Cy Cluster size (#carbons)	10	11
Chain length	5.0	4.8

Example of branch chain characterization that can be used to replicate a fuel with a limited number of surrogate compounds

- Useful in visualizing relative importance of carbon structures to the bulk makeup of the fuel; example here is for 16 carbon chain.
- May be useful in formulating kinetic surrogate fuels.

