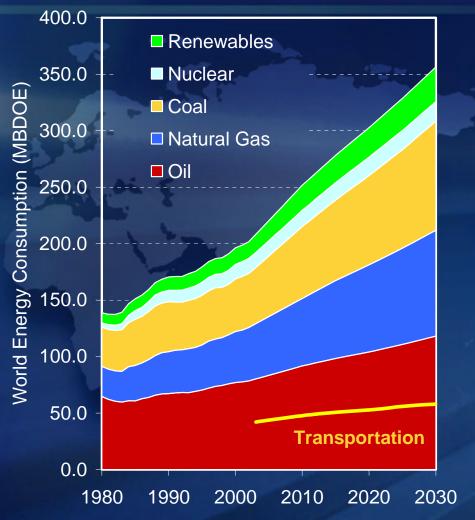


15th DEER Conference

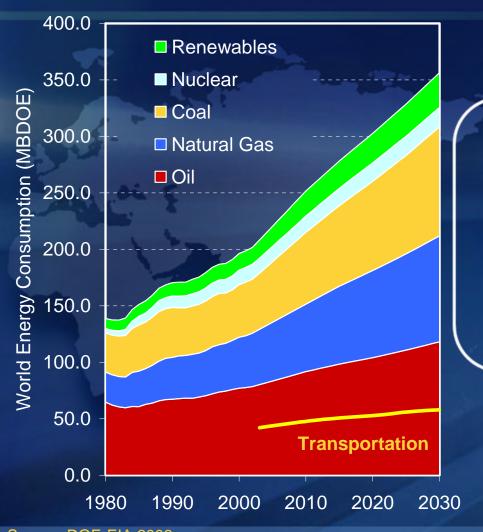
New Directions in Engines and Fuels



Our Industry is in a State of Transformation!

The 3 Es: SUSTAINABILITY

Global Energy Consumption to 2030 -The projections in 2006



Oil

- 2006: 85MBD1,000 barrels/second !
- 2030: 120 MBD projected
- 50% used for transportation
- Transportation is 96% dependent on petroleum

Source: DOE-EIA 2006

Global Energy Consumption to 2030 -The projections in 2006

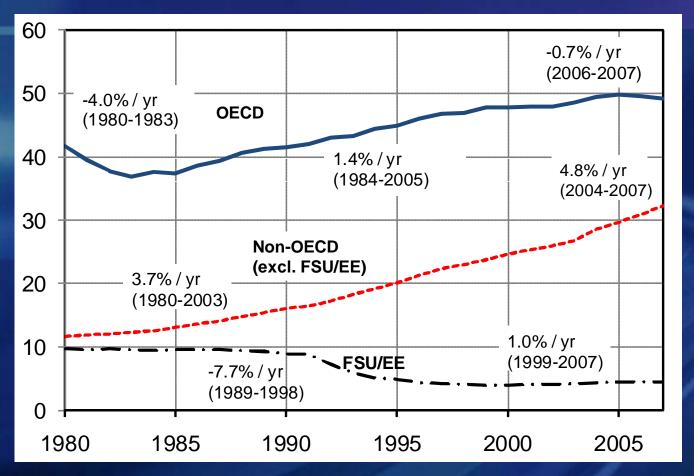
2008 Update (IEA)

- 2008: 86MBD
- 2030: 106MBD projected

Source: DOE-EIA 2006

World Oil Demand at Different Oil Intensities

Oil Intensity	Global Oil Demand at this Oil Intensity Million Barrels Per Day (MBD)						
Barrels/Person/Year	In 2010	In 2020	In 2030				
25.2 (US 2007)	455	524	572				
14.3 (Japan 2007)	259	300	325				
10	181	210	227				
6	109	125	136				
4.76 (World 2007)	86	99	108				

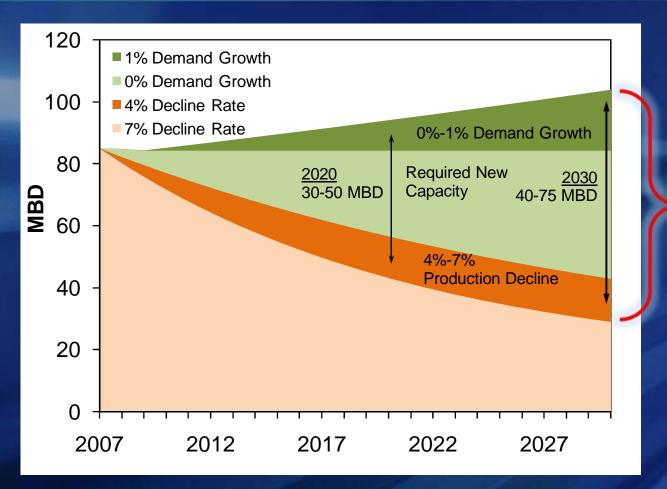

evelopment

Population Growth

Source: Historical data from IEA and US Bureau of the Census data

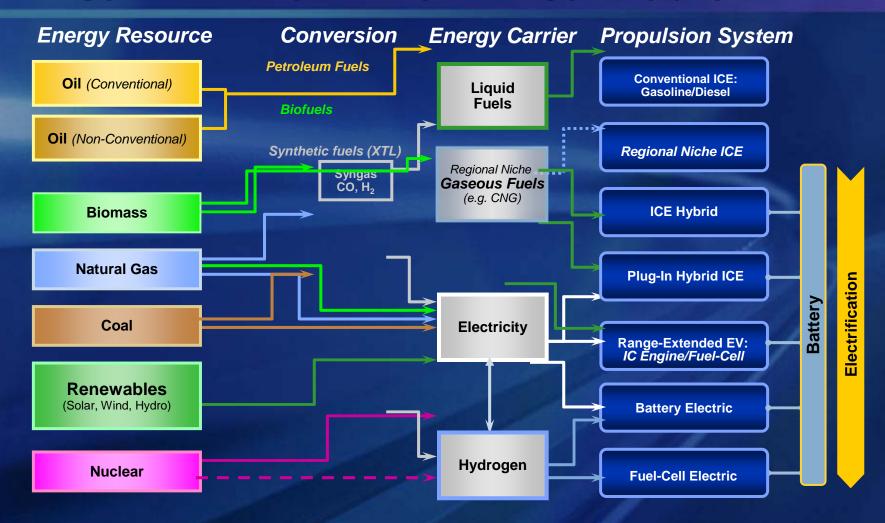
Oil Demand Growth from 1980 to 2007

(million barrels per day)



OECD: Organization for Economic Cooperation and Development

FSU: Former Soviet Union EE: Eastern Europe


Source: Data from EIA

Significant new Capacity is Required to make up for Declines in Existing Capacity!

"Needing 6 new Saudi Arabias by 2030"!

Energy Diversity & Key Energy Supply Chains

Biofuels Technology Roadmap

1st Generation "Gen 1.5" 2nd Generation 3rd Generation 4th Generation Feedstock: Sugars, Starch → Cellulose Sugarcane Grasses Designer **Wood biomass** Corn energy crops Cassava Sugarbeet, ... Sweet Sorghum Cellulosic Waste Designer Biocrude **Pvrolvsis Alcohols** Green **Ethanol Ethanol** bacteria hydro- to Refinery final fuels convert CO2 **Fuels and Conversion Products** carbons directly to Hydro-treated final fuel Biomass-to-**FAME** Bio-oil to **Alcohol Biodiesel** products Biodiesel* Liquids (FT) **Green Fuels** Soybeans Jatropha Algae Palm oil Camellina Rapeseed etc. **Tallow** Waste veg. oil Feedstock: Oil-seed / Waste Lipids → Algae

GM Sandia 90-Billion Gallon Biofuel Deployment Study

Joint project conducted by GM and Sandia National Laboratories is the first true value-

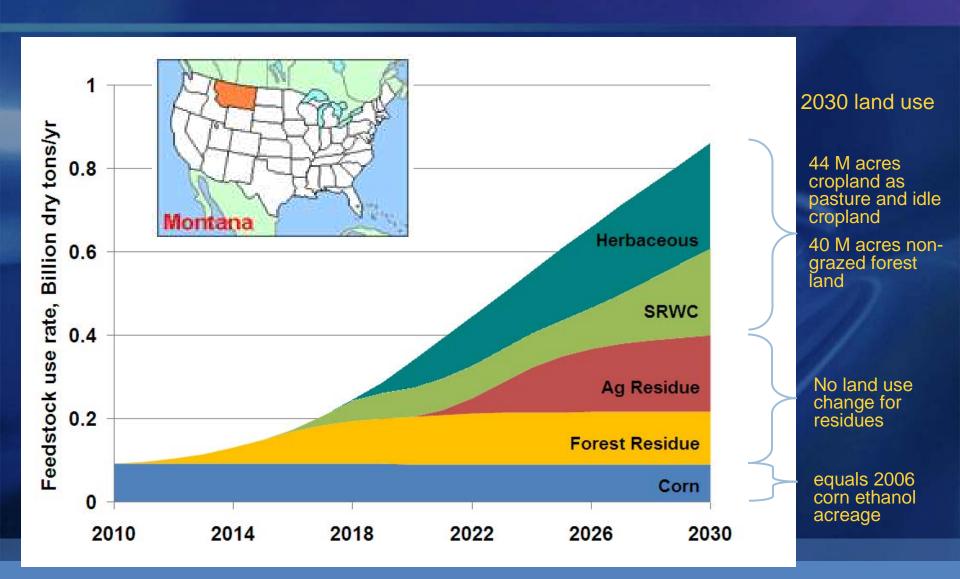
chain approach to future large-scale biofuels

Feedstock

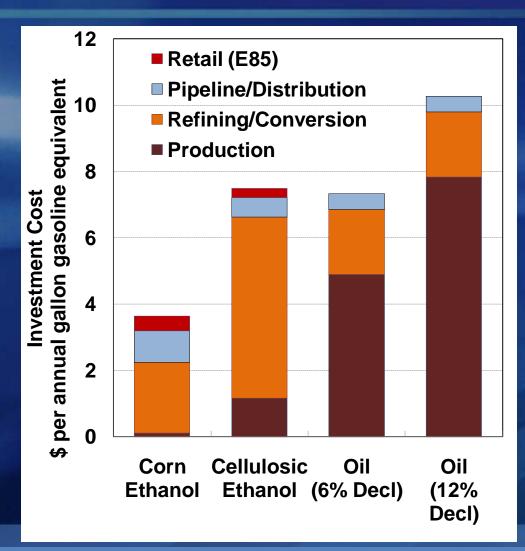
Storage and Transport

Conversion

Distribution


Can Large-Scale Biofuels Provide a Real and Sustainable Solution to Reducing Petroleum Dependence?

- 1. What must happen to grow ethanol production to 90B gal by 2030?
- 2. What is required for cellulosic ethanol to be cost competitive with gasoline?
- 3. What are the associated greenhouse gas, energy, and water footprints?
- 4. What risks could impact cellulosic ethanol's production and competitiveness goals and how can we mitigate these?



Biomass for 90 billion gallons of ethanol can be produced largely without reducing current active cropland

SRWC: Short Rotation Woody Crop

Petroleum or Ethanol: Capital Costs Are Quite Similar

- Actual costs to sustain petroleum production over a 25-year period in the Gulf of Mexico vs. same energy production via ethanol
- Ethanol CAPEX is dominated by the cost of building cellulosic biorefineries.
 Efforts to reduce the installed per gallon cost have significant payoff.
- The retail infrastructure for E85 is a comparatively small cost.
- Petroleum CAPEX is dominated exploration and production; existing refineries can be used but will require upgrading and maintenance over time.
- New production in the Gulf of Mexico assumes 6% or 12% decline in field over a 25-year period: requires ongoing investment in oil field production and bringing online new wells.

Biomass Energy Potential by Continent from Abandoned Agricultural Land

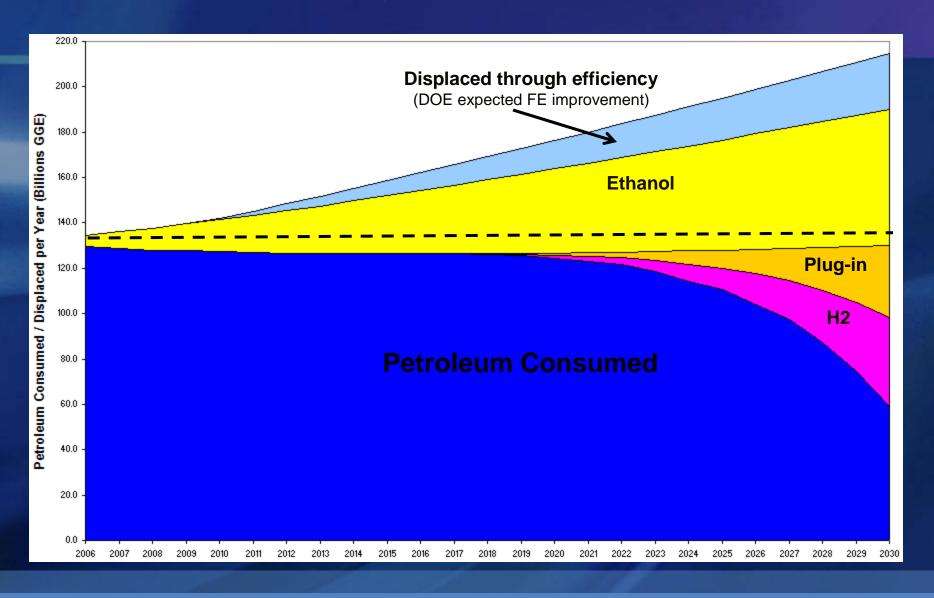
** Ethanol chosen as example liquid fuel. 1 US gal = 3.78 liter.

		on one onteninpro in	quia juen ± 00 gar	011 0 110011		
Continent	Abandoned Land (Mha)	Biomass Productivity (ton C/ha/yr)	Mean Productivity (ton C/ha/yr)	Biofuels Potential (EJ/yr)	Mean (EJ)	Ethanol Volume (E gal)***
Asia	67-83	1.2-1.7	1.4	1.6-2.8	2.1	26
North	34-39	3.5-3.7	3.6	2.4-2.9	2.6	33
America						
Europe	15-17	3.5-5.0	4.3	1.0-1.7	1.4	18
Africa	51-66	3.1-4.6	3.8	3.1-6.0	4.5	56
South America	49-56	4.5-5.6	5.0	4.4-6.3	5.3	66
Oceania	0-1	7.0-9.5	8.2	0.1-0.1	0.1	1
Australia	61-65	3.0-4.3	3.6	3.7-5.6	4.6	58

Campbell, J. E., D. B. Lobell, R. C. Genova, and C. B. Field: The global potential of bioenergy on abandoned agriculture lands. Environmental Science & Technology, online June 25, 2008 edition.

Field, C. B., J. E. Campbell, and D. B. Lobell: Biomass energy: the scale of the potential resource, Trends in Ecology & Evolution 23:65-72, 2008.

Electricity as a Transportation Fuel



Composite Effect of New Technologies – Example Scenario

(Efficiency improvements, ethanol, plug-ins, and FCEVs)

Mobility based predominately on Petroleum faces Severe and Imminent constraints

- Petroleum production and deliverability are inadequate to supply an economically developing world
 - Even slight increases in petroleum intensity per person, coupled with global population growth requires production well beyond capability in the next two decades
 - The current global recession is a temporary lull that must be used wisely
- GM remains committed to an energy strategy that displaces petroleum through efficiency improvements and diversification of energy carriers
- Biofuels present a strategic opportunity in the drive for energy and environmental sustainability
- Electrification of the vehicle will continue to provide efficiency improvements (hybrids) and give access to the widest range of energy resources (Plug In Hybrids, E-REVs. BEVs & Fuel Cells)
- A collective will and constancy of purpose are required with the end in mind (Auto, Energy, Governments and Society)

