Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept

L. Xu, M.A. Dearth, W.C. Ruona, and R.W. McCabe,

Ford Motor Company

2009 DEER Conference Dearborn, MI August 4, 2009

Contact: rmccabe@ford.com

2nd Generation LNT+ in-situ SCR

- New system-level technology enabled by advanced LNT and urea-SCR type catalysts provided by Ford's catalyst suppliers.
- Extends aged FTP NOx conversion efficiency to >93% vs 75-80% for LNT only system
- Opens door to sub-T2/B5 emissions for diesel applications
- Enables low-loaded LNT technology and improves costcompetitiveness with urea-SCR
- Potential common technology solution for Euro and U.S. LD diesel emissions
- Reduced fuel economy penalty compared to 1st Gen systems aimed at generating NH3

NH₃ in-situ mechanism

- "Classical" explanation:
 - LNT produces NH₃ during rich purges (similar to TWC under rich engine conditions)
 - NH₃ stores on downstream SCR catalyst
 - Stored NH₃ reacts with "breakthrough" NOx during lean operation
 - Similar to urea-SCR except that NH3 is generated "in-situ" or "passively" by the LNT
- NH₃ in-situ mechanism does not appear to fully explain 2nd-Gen LNT+SCR data

2nd Gen LNT + SCR

Key points:

- enabled by advances to <u>both</u> LNT catalyst technology and SCR catalyst technology
- relies (to some extent) on a non-ammonia
 NOx reduction mechanism
- LNT purge parameters are critical (rich λ, O₂ content, HC type & amount, NOx storage levels, LNT temps, etc.)
- suppresses H₂S emissions during LNT desulfation (see next slide)

Desulfation Comparison: LNT-only vs LNT+SCR

New Cu-SCR catalyst virtually eliminates H2S emissions produced by LNT during rich high-temperature desulfation (H2S from LNT converted to SO2) – more detail in SAE 2009-01-0285 (L. Xu et al.)

Catalysts: New LNTs

- Suppliers are providing LNTs with lower PGM loadings and lower De-SOx temperatures.
 - De-SOx temperatures reduced from 750-800C to 680-745C
 - PGM loadings decreased by 30-40%
 - Reference: Xu, et al., SAE 2009-01-0285
- Lower De-SOx temperatures improve durability & may allow synergistic De-SOx & DPF regeneration.
- Lower PGM loadings & volumes improve cost competiveness of LNT+SCR with urea-SCR.

Lab data showing improved NOx efficiency of 2nd-Gen LNT+SCR with lowered PGM loading

NOx conversion - 1st-Gen (PGM 120g/ft³) and 2nd-Gen (PGM 85g/ft³) on LNT + SCR systems (50k, 3-mode) 60/5

Catalysts: New SCRs

- 2nd-Gen urea-SCR formulations (HC poison resistant, low N2O yield) work well for LNT-SCR.
 - both Cu and Fe zeolite technologies effective
 - 2nd-Gen SCR formulations show good durability under rich aging conditions
- Several suppliers capable of providing SCR technology.

Vehicle Evaluations

- Vehicle 1: Land Rover LR3 Euro Stage 3 vehicle (~ 50k miles on the test vehicle)
 - Calibrated for 2005-level LNT and SCR catalyst technology
 - 2.7L engine tested at an inertial weight of 3780 lb
- Vehicle 2: Mock-up on Light-Duty pick-up truck
 - Tested at 5750 lb inertial weight
- All testing carried out in Ford's VERL facility

2nd Gen LNT+SCR system – LR3

			Calc.	Engine		Cell
Component	Load	Dia. X Length (in)	Vol (L)	Swept V	Material	CPSI / Wall
DOC 2*	70g/ft3	4.66" × 3"	0.84	31%	Ceramic	400 / 6 mil
LNT**	85g/ft3	2 – 5.66"*3.5	2.88	107%	Ceramic	400 / 6 mil
SCR	-	2 – 5.66"*3.5	2.88	107%	Ceramic	400 / 6 mil
cDPF	20g/ft3	7.5" x 8 "	6.0	222%	SiC	200 / 15mil

^{•*} There is a small metallic DOC 1 upstream

Note low loading (85 g/ft3) and volume (~1xESV) of LNT 2-brick system

^{•**}The LNT and SCR were hydrothermally aged (120k)

FTP75 Emissions Results (Experimental LNT + SCR Systems for LR3 and Pick-up Truck)

Vehicle	Emissions	Before DOC	After LNT	Tailpipe	Stage #1	Stage #2	Overall
		FG	MB	TP	FG-MB	MB-TP	FG-TP
		g/mi	g/mi	g/mi	Efficiency (%)	Efficiency (%)	Efficiency (%)
LR3	NMHC	3.42	0.25	0.10	92%	60%	<mark>97%</mark>
120k mile	CO	7.53	0.24	0.21	96.77%	12%	97%
(hydrothermal)	NOx	0.76	0.1	0.03	86.87%	66%	<mark>96%</mark>
Pick-up	NMHC	2.10	0.08	0.050	96%	38%	<mark>98%</mark>
(mockup) *	CO	8.08	0.157	0.20	98%	-27%	98%
120k mile	NOx	0.52	0.07	0.023	86.5%	67%	<mark>96%</mark>
(hydrothermal)							

^{*} Pick-up LNT volume is 80% of the engine displacement

< T2/B3 (0.055NMOG, 2.1CO & 0.03 NOx)

High-Load Testing (US06)

US06 traditionally a problem area for LNT systems because of decreased NOx storage at high temperatures

LR3 – Purge strategy not active at highest temperatures of US06 (83.5% overall NOx conversion nonetheless)

2.0L Mondeo* – TP NOx of 0.11 g/mi achieved with a FG NOx of 0.85 g/mi (87% efficiency) using 75K km dyno aged LNT and de-greened SCR catalyst (Max SCR temp = 400 ℃)

^{*} Mondeo tests conducted at Ford's FFA laboratory in Aachen, Germany

How important is NH₃?

- Ford R&A Cat Modeling Team (Santhoji Katare)
 has conducted a detailed quantitative
 assessment of test procedures and theoretical
 NH₃ contribution to observed NOx conversion.
- This is a preliminary step toward developing models to aid in LNT+SCR system design and optimal operation.
- Results confirm presence of a significant non-NH₃ mechanism (see following slide).

Bags 1 & 3 NOx conversion unaccounted for by NH₃-based model suggests non-NH₃ mechanism

Lab data also suggest a non-NH3 reduction mechanism

- Note enhanced conversion from SCR cat at temps below 225C and above 450C (where little or no NH3 is formed or expected to store on the SCR cat)
- Data suggest an additional non-ammonia NOx conversion mechanism over the SCR catalyst.

Lab data: 70K simulated 3-mode Lab aging; 60sL/5sR eval. cycles

Vehicle Testing: Steady-Speed

NOx & NH₃ concentration during a steady state (55mph, catalyst temperature at 380°C (lean) and 430°C(rich))

Note: NH3 produced cannot explain extra NOx conversion by SCR cat

Mechanistic Considerations

Non-Ammonia NOx Reduction

- NO, NO2 and HC reductant all need to pass through the LNT upstream of the SCR to obtain enhanced conversion (suggests formation of an organo-nitrogen compound over the LNT & storage on the SCR cat).
- No evidence for NO2 + Aldehyde reaction at zeolite as with cold plasma research.
- Various species (such as nitromethane) ruled out (not observed with FTIR & V&F mass spectrometer).
- HCNO (isocyanic acid) observed via mass spec and FTIR in lab experiments with ethylene as the HC species

Working-level hypothesis of a literaturebased non-NH3 LNT mechanism

$$C_2H_4 + O_2$$
 \xrightarrow{LNT} HCCO + H_2O +H (1)

$$HCCO + NO_2 \xrightarrow{ENT} HCNO_{(g)} + CO_2$$
 (2)

$$HCNO_{(ads)} + H_20$$
 $SCR Lewis$
 $NH_3 + CO_2$
 $Acid site$
(3)

- (1) Ethylene partially oxidized across the LNT to form HCCO the ketenyl radical.
- (2) HCCO reacts over the precious metals with NO2 (released from Ba storage sites)
- (3) HCNO is stable in the gas phase and is transported to the SCR where it is adsorbed by a Lewis acid site and is decomposed by reaction with H2O, to form NH3 (which can subsequently oxidize to N2 or react with breakthrough NOx from the LNT).

Summary

- Experimental results show low-emissions potential - possibly T2/B2 (SULEV) NOx with low-emitting engines and system optimization. NMOG may be the greatest challenge.
- Preliminary data suggest minimal FE penalty.
- All results obtained with production worthy LNT and SCR supplier catalyst formulations.
- SFTP-compatible (especially US06).
- Low PGM loadings/volumes improve costcompetitiveness with urea-SCR.

LNT+in-situ SCR: early stages of development but potentially an enabler of affordable, clean, fuel-efficient LD diesel vehicles.

R&D Needs

- Continued work on understanding the NOx reduction mechanisms.
- Further catalyst optimization.
- Catalyst system architecture
 including opportunities for
 integrated catalyst elements.
- Combustion optimization (LTC vs conventional)
- Controls! (cold-start; purge; de-SOx; DPF regen; sensors; diagnostics, etc.)

DOE grant with UH, UK, & BASF to explore these aspects