

High Energy Rechargeable Lithium-Metal Cells: Fabrication and Integration

JIE XIAO PACIFIC NORTHWEST NATIONAL LABORATORY JUNE 4TH, 2020

2020 DOE VEHICLE TECHNOLOGIES PROGRAM ANNUAL MERIT REVIEW

Project ID #: Bat369

Overview

Timeline

- Project start date: December 2016
- Project end date: October 2021
- Percent complete: 60%

Budget

- Total project funding: \$50M
 - DOE share: 100%
- Funding for FY 2019: \$10M
- Funding for FY 2020: \$10M

Barriers

- Low energy: Li metal anode will boost cell energy
- Short battery Life: mitigating side reactions will extend the cycling stability

Partners

- Battery 500 Pls
- 3 national labs
- 10 universities
- GM, Albemarle, Umicore

Relevance/Objectives

Overall Objectives

- Overcome the fundamental issues in building high-energy rechargeable Li metal batteries
- Demonstration of long-term cycling of 500 Wh/kg Li metal cells

Objectives of this period

- Identify the cell-level scientific challenges in high-energy rechargeable Li metal batteries:
 Li-S and Li/NMC
- Demonstrate 350 Wh/kg Li metal pouch cells for at least 350 stable cycles
- Demonstrate 400 Wh/kg Li metal pouch cells for 100 stable cycles

Impacts

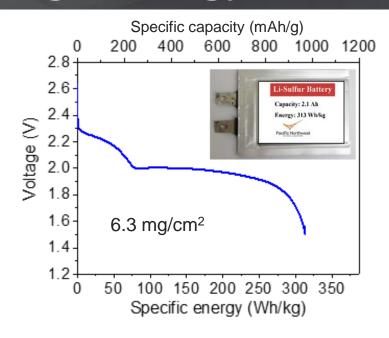
 Accelerate the development of high-energy rechargeable Li metal batteries for future vehicle electrification

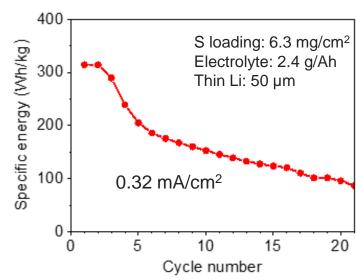
Milestones: Keystone Project 3 for Cell Fabrication, Testing and Diagnosis

Milestones and Go/No-Go Decisions	Date	Status
Understand the mechanism of high S loading and cycling stability	12/31/2019	Completed (Jie Xiao)
Quantify the 3D morphology of lithium anode under various pressure	3/31/2020	Completed (Shirley Meng)
Quantify the impact of cycling conditions using a standard single layer pouch cell design (pressure, charge/discharge rates and T)	6/30/2020	On track (Eric Dufek)
 Fabricate and test a pouch cell capable of 350 Wh/kg and 350 cycles Fabricate and test a pouch cell capable of 400 Wh/kg and 100 cycles 	9/30/2020	On track (Jie Xiao)

Approach

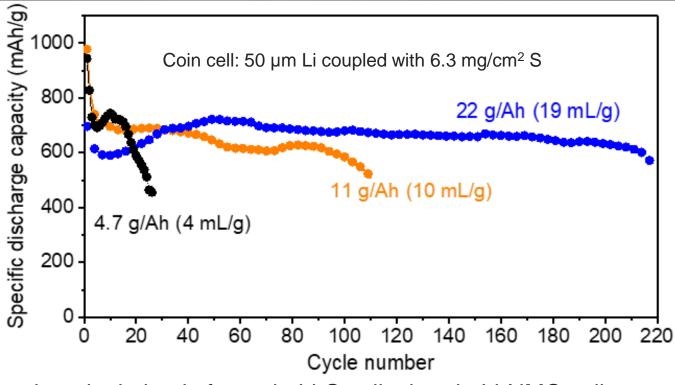
- For Li-S cells: Identify the key factors that limit the reversible cycling at pouch cell level
- For Li/NMC cells: Push the limit of cycling by tuning Li/electrolyte interface
- Investigate the impacts of pressure on Li metal cells
- Develop a safety protocol for studying high-energy Li metal cells from electrode preparation, cell assembly, testing and disposal

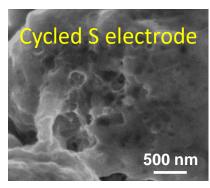

<u>Technical Accomplishments:</u> **Demonstration of High-energy Li-S**

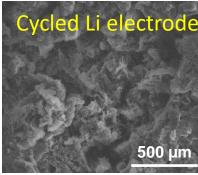


Large-scale uniform S/C coating

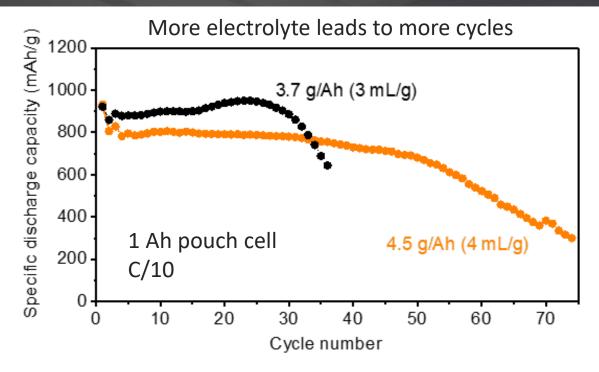
Nano-structured micron-sized S/C composite with porosity control

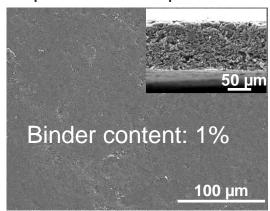



- All S/C materials and electrodes are synthesized at PNNL and supplied to the entire consortium
 as baseline cathodes.
- Demonstration of 313 Wh/kg Li-S pouch cell: high S loading (6.3 mg/cm²), lean electrolyte (2.4 g/Ah=2.5 m/g sulfur) and thin Li foil (50 μm).
- Cycling stability is poor: need to identify the dominant reason for limited cycling



Technical Accomplishments: The Amount of Electrolyte Determines Li-S Cycling Stability

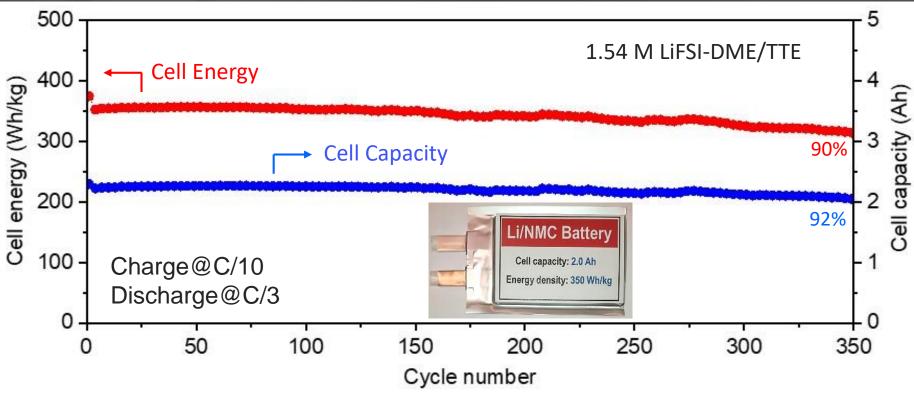

- Electrolyte depletion is faster in Li-S cells than in Li-NMC cells
 - Electrolyte reacts with BOTH polysulfide cathode and Li anode.
 - Electrolyte distribution in DENSE and high S loading cathode is inhomogeneous.
- 50 µm Li is sufficient for the first few hundreds of Li-S cycling: Electrolyte content determines how long the stable cycling lasts
- The main reason for poor cycling in pouch cells: very lean electrolyte (only 2.5 mL g⁻¹)


Technical Accomplishments: Maximizing Electrolyte Amount 🛬

in Pouch Cell is the First Step to Extend Li-S Cycling

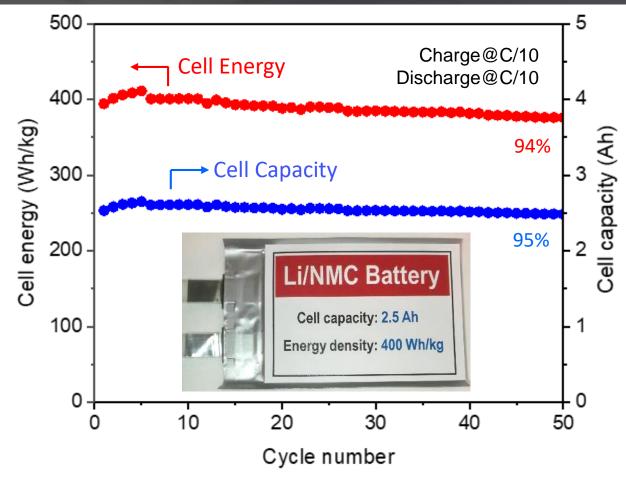
Proudly Operated by Baffelle Since 1965

example to reduce parasitic weight


Save weight for electrolyte to extend Li-S cycling

- Increase S utilization so less S is needed to meet the same areal capacity
- Reduce the "dead" weight e.g., binder content in the cathode
- Reduce cathode porosity (<50%): minimize electrolyte intake on cathode side without sacrificing performance
- Reducing polysulfide crossover and Li metal stabilization are being investigated concurrently by other teams.

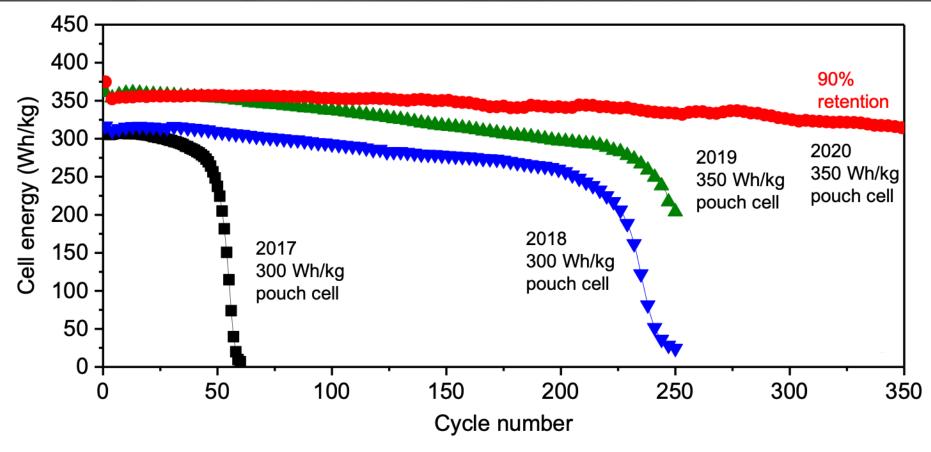
Technical Accomplishments: Stable Cycling of 350 Wh/kg Li/NMC622 Pouch Cell



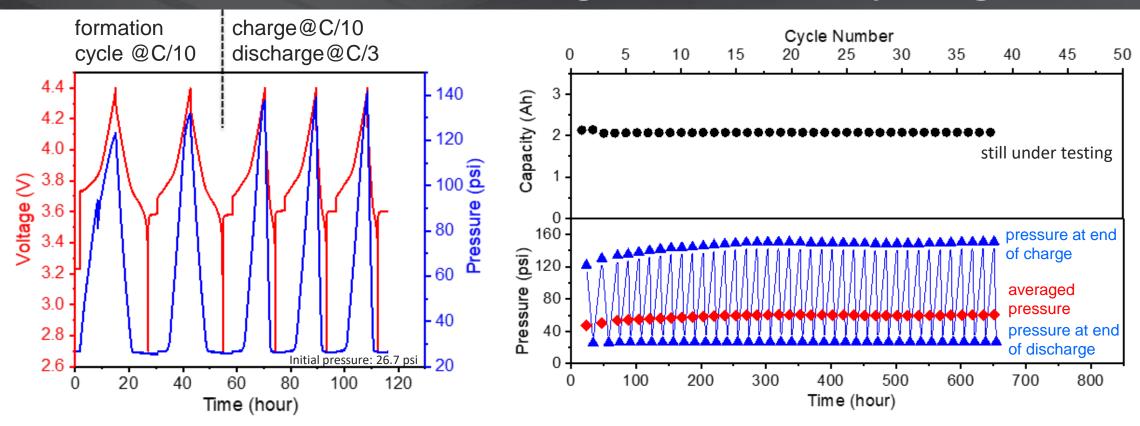
- Prototyping Li metal pouch cells demonstrate stable cycling: >350 cycles with 90% capacity retention (still under testing).
- A great platform to accelerate Batt500 innovation: electrode architecture, electrolyte, cell design, cell balance etc.
- Prototyping pouch cells were also shipped out for independent validation.

Technical Accomplishments: 400 Wh/kg Pouch Cell Based on Li/NMC811

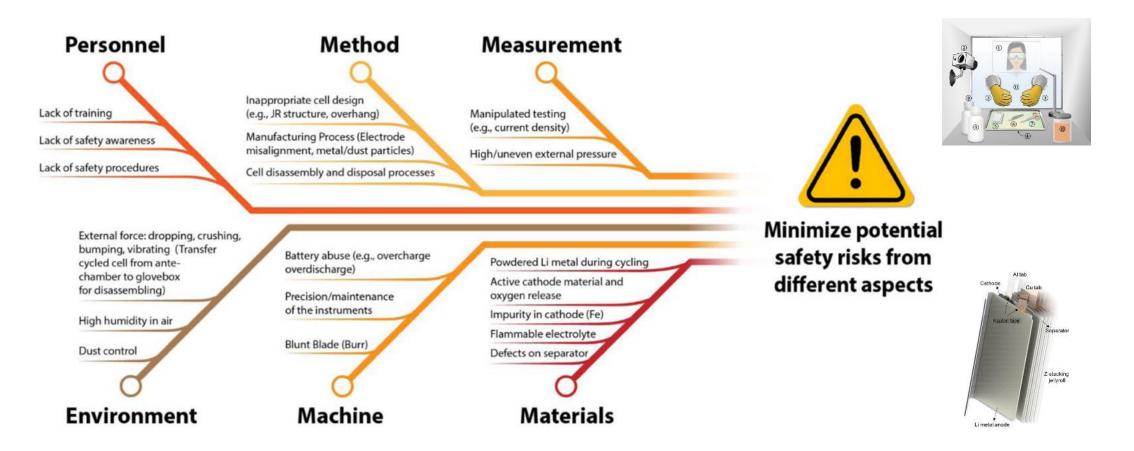
Proudly Operated by **Battelle** Since 1965



400 Wh/kg pouch cell demonstrates stable cycling (still under testing)


Technical Accomplishments: Increasing Cycling and Reducing Cell Swelling

- Steady improvement of pouch cell cycling through integrated modification of electrode architecture, electrolyte recipe and cell design.
- Pouch cell swelling was significantly reduced from 110% (after only 10 cycles) to 35% (after stable 300 cycles).


Technical Accomplishments: In Operando Pacific Northwest NATIONAL LABORATORY Pacific Northwest

- Cell pressure change is consistent with reversible use of Li metal anode.
- Cell pressure slightly increases at the end of each charge and almost goes back to initial pressure (26.7 psi) at the end of each discharge for the first 37 cycles.
- Correlation between cell pressure change and "dead" Li buildup is underway.

Technical Accomplishments: Good Practices for Rechargeable Li Metal Batteries of peraled by Battelle Since 19

 Developed and shared a safety protocol to minimize safety risks of high-energy batteries (not just Li metal cells): slurry mixing, electrode design, cell fabrication, cell screening, testing, disassembly and disposal

Responses to Previous Years Reviewers' Comments

Proudly Operated by **Battelle** Since 1965

This project was not reviewed last year.

Collaboration and Coordination with Other Institutions

Proudly Operated by Battelle Since 1965

Industry:

- General Motors
- Albemarle
- Umicore

University:

- SUNY Binghamton: materials selection
- Univ. Washington: separator coating
- UC San Diego: testing on PNNL electrolytes
- Univ. Pittsburg: supplied S/C composite for electrode coating
- Penn State Univ.: testing of thick NMC and S electrodes made at PNNL
- Univ. Houston: testing of PNNL new electrolyte
- Stanford/SLAC: electrodes and electrolyte testing
- UT Austin: Supplied high-Ni NMC to PNNL for evaluation
- Univ. Maryland/Army research Lab: electrolyte development

National Laboratory

- Idaho National Lab: independent testing of PNNL-made pouch cell; co-develop safety protocol
- Brookhaven Nation Lab: characterization of PNNL fabricated electrodes/electrolytes
- SLAC: new electrolyte characterization

Remaining Challenges and Barriers

- Push the cell energy towards 500 Wh/kg with stable cycling by integrating new concepts from Battery500 Consortium
 - Coin cell protocol developed in FY18 helps much to accelerate coin cell-topouch cell transition
- Balance of high energy and cycle life of Li metal cells
- Dendrite-induced cell shorting
 - C/10 charging is used for now to decouple cell shorting and cell failure caused by Li/electrolyte depletion.

Proposed Future Work

- Li-S pouch cell design to balance energy and cycling
- Further improve cycling of 400/350 Wh/kg Li pouch cells
- Stabilize interfacial reaction between Li and electrolyte
- Study pressure impacts in pouch cell cycling

Any proposed future work is subject to change based on funding levels.

Summary

- Identified the key parameters that limits the cycling stability of high-energy Li-S cells.
- Successful demonstration of 350 Wh/kg and 400 Wh/kg Li pouch cell with stable cycling
- In operando cell pressure measurement has been developed to monitor and understand pouch cell pressure changes upon cycling and its correlation with Li microstructure evolution.
- Developed safety protocol of rechargeable Li metal batteries being shared with research community and industry

Acknowledgement

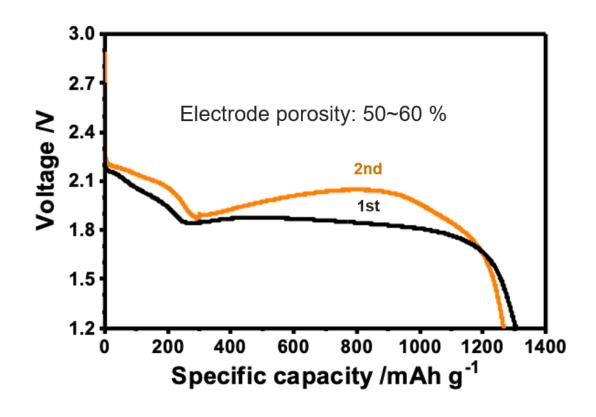
- DOE/EERE/VTO: Battery500
- Key contributors: C. Niu, D. Liu, D. Lv, L.Shi,
 A. Baranovskiy, B.Wu, W. Xu, J. Zhang, J. Liu
- Battery500 PIs and their teams

Proudly Operated by **Battelle** Since 1965

Technical Backup Slides

Technical Backup:

Li-S Cell Cycling is "Manageable"


Separator Cu (-) (350 Wh/kg) S cathode Lean electrolyte: E/C < 3.0 g/Ah Li metal, >250 µm S cathode < 2 mAh/cm² 50 mAh/cm² N/P > 25Flooded electrolyte: E/C > 30 g/A h (10 times)

- Three key parameters are drastically different: cathode areal capacity, N/P ratio and electrolyte amount
- A standard coin cell testing protocol has been developed for Batt500 consortium.

Technical Backup: Discharge Curves S cathode with 1% Binder

- With only 1% binder and reduced porosity, the utilization of S is still quite high: 1300 mAh/g.
- An "activation" process is observed presumably assigned to the improved wetting during the 2nd cycling.

Technical Backup: Voltage Profile of 350 Wh/kg Li/NMC622 Pouch Cell

Good utilization of NMC622 in thick and dense cathode (22.4 mg/cm² and 35% porosity)

