

Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar[®]

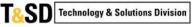
Engine Research

Chris Gehrke, Michael Radovanovic, Doug Frieden, Eric Schroeder, Parag Mehresh and David Milam – Caterpillar®

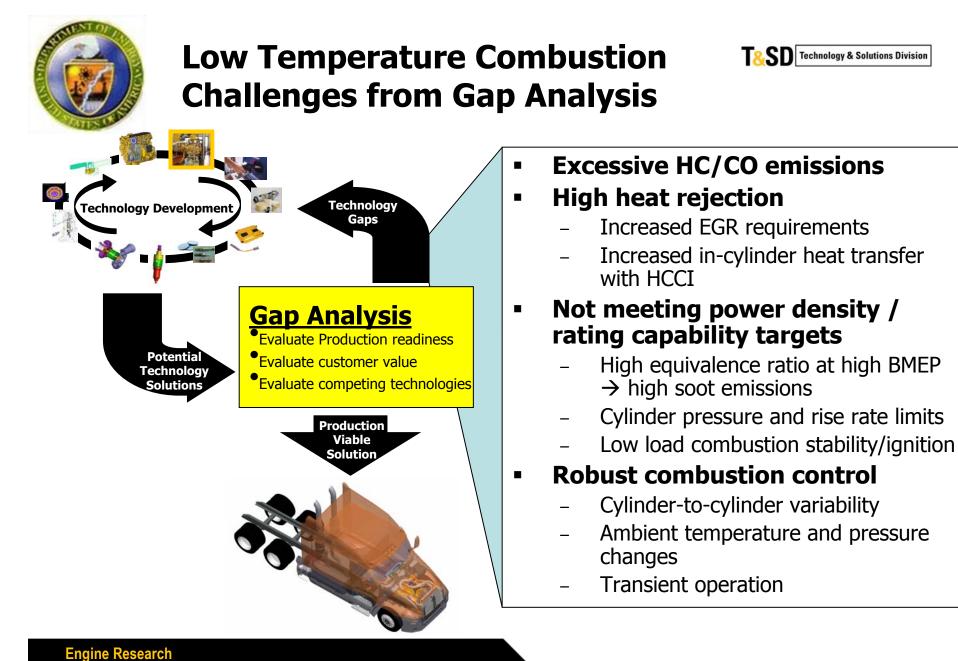
Glen Martin and Chuck Mueller - Sandia National Laboratories

Paul Bessonette – ExxonMobil®

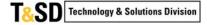
DOE Contract DE-FC26-05NT42412 DOE Technology Development Manager: Roland Gravel NETL Project Manager: Ralph Nine

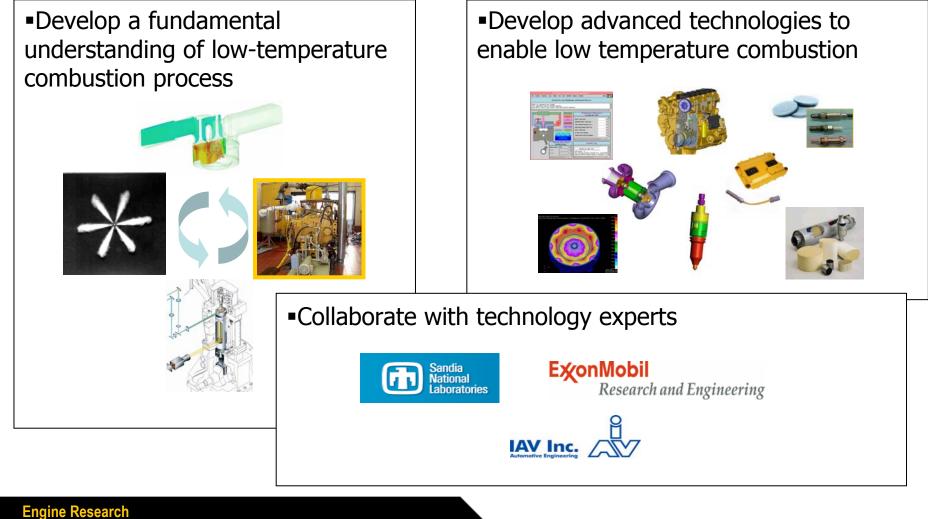


DOE DEER Conference Detroit, MI Aug 12-16, 2007


Goals and Objectives:

- Develop technologies to enable a low emissions, high efficiency, production viable, low-temperature combustion engine system
 - 2010 on-highway/ Tier 4 off-road emissions compliant
 - 55% thermal efficiency (~30% carbon emissions reduction)
 - Increased customer value
- Objective of low temperature combustion development
 - Take advantage of a thermodynamically attractive combustion process
 - Eliminate need for NOx or PM aftertreatment
 - \rightarrow Reduced backpressure and lower cost





Systems approach to low temperature combustion development

CATERPILLAR®

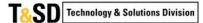
Optical Engine Testing with Sandia National Laboratories

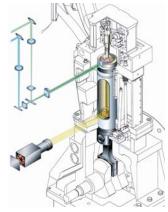
Objectives:

 Use optical diagnostics to improve fundamental understanding of in-cylinder processes and validate computational models

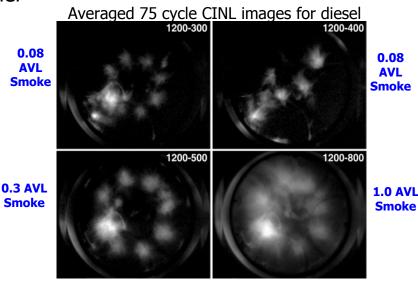
Approach:

- Work completed by Glen Martin and Chuck Mueller
- Natural luminosity imaging of combustion
 - Shows spatial and temporal evolution of soot incandescence
 - High signal indicative of high soot concentration and/or temperature


Results:


 Previous natural luminosity results showed a relationship between smoke emissions and the intensity of the pool fires at the locations of liquid fuel impingement on piston surface

Engine Research



Schematic of SCORE configured for laser-sheet imaging.

AVL Max Target of 0.1

Optical Engine Testing with Sandia National Laboratories

2.0° 17.0° Results: – Confirmation of pool fires on surface of piston bowl 22.0 27.0° 32.0° 37.0° Reflection off top of piston bowl rim window Bottom of piston bowl 47.0° 42.0° 52.0° 57.0° Conclusion: - Liquid fuel impingement on the piston bowl is a significant factor for soot emissions

Engine Research

Advanced Fuel Systems Development

T&SD Technology & Solutions Division

Objective:

 Investigate fuel injection strategy as a means to affect mixture preparation and reduce liquid fuel impingement

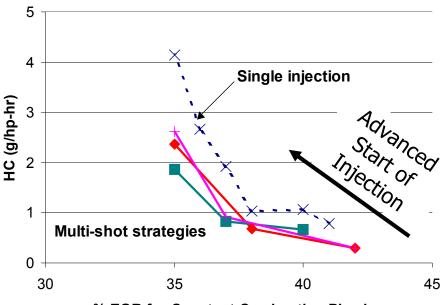
Approach:

 Swept start of injection timing and adjusted EGR to achieve constant combustion phasing

-Varied injection strategy

• # of shots (up to 4), injection spacing and fuel apportionment

Results:


Multiple injection strategies improved the EGR-HC tradeoff

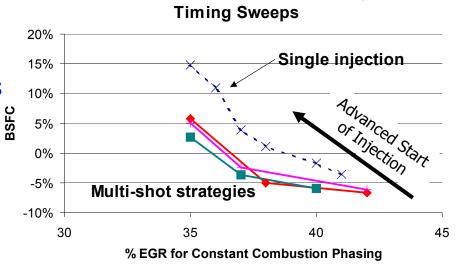
 \rightarrow Increased homogeneity, less liquid fuel impingement

Engine Research

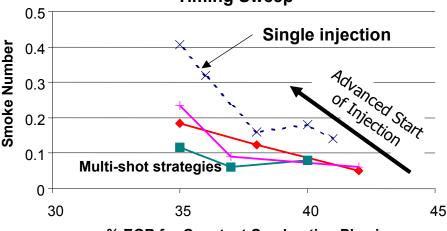
HC-%EGR Tradeoffs for Start of Injection Sweep

% EGR for Constant Combustion Phasing

Advanced Fuel Systems Development %EGR


%EGR - BSFC Tradeoffs for Start of Injection

Results:

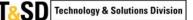

- Improved BSFC with multiple injections
 - Reduced fuel dilution of engine oil
 - Improved carbon balance (carbon in compared to carbon out)
 - \rightarrow Reduced liquid fuel impingement on liner
- Reduced smoke emissions with multiple injection
 - \rightarrow Reduced liquid fuel impingement on piston surface
 - \rightarrow More homogeneous mixture preparation

Conclusion:

 Multiple injections are beneficial for HCCI mixture preparation and emissions

Smoke-%EGR Tradeoffs for Start of Injection Timing Sweep

% EGR for Constant Combustion Phasing



Engine Research

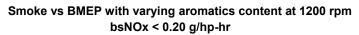
Fuel Property Investigation

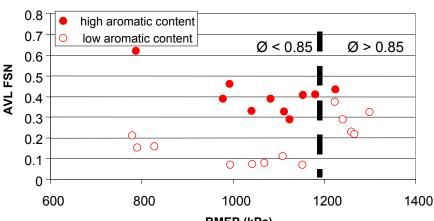
in collaboration with $\mathsf{ExxonMobil}^{\texttt{R}}$

Objective:

- Tailor fuel properties to engine characteristics and/or engine operating conditions for low temp combustion
- Establish impact of fuel properties on emissions with low temperature combustion


Approach:


- Tested diesel fuels with varying...
 - •cetane number
 - •aromatic/ iso-paraffin composition but equal cetane number


Results:

Engine Research

- Established relationship between engine characteristics, diesel fuel cetane number and engine load capability
- Demonstrated modest benefit of lower aromatic content fuels in reducing soot emissions

BMEP (kPa)

HCCI with Variable Compression Ratio (VCR)

Objective:

Demonstrate functional viability of eccentric crankshaft VCR mechanism
Quantify benefits of VCR engine relative to load capability, fuel consumption and combustion control robustness

Approach:

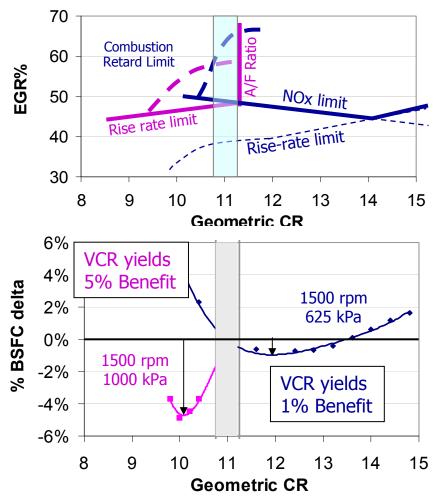
 Successfully designed, built and tested an eccentric crankshaft variable compression ratio engine

 Used engine to demonstrate benefits of variable compression ratio and investigate control strategies

HCCI with Variable Compression Ratio (VCR)

Results:

 A fixed compression ratio must be chosen that allows robust operation at all load conditions


- Limited load range
- Sacrifice fuel consumption

 With variable compression ratio, optimum BSFC can be attained without limiting operating range

Conclusion:

-VCR is an effective technology for increasing engine operating range and achieving optimal thermal efficiency

Fixed Compression Ratio Compromise

Summary

- Caterpillar[®] continues to explore low temperature combustion as a high efficiency, low emissions engine technology
- Optical engine experiments provided valuable insight into combustion fundamentals, such as the relationship between liquid fuel impingement and soot emissions
- Multiple injections improved mixture preparation and thus lowered EGR requirements while reducing HC and smoke emissions
- Fuel property investigations provided a relationship between diesel fuel cetane number and engine load capability and a relationship between aromatic content and smoke emissions.
- Variable compression ratio engine allowed the engine operating range to be robustly expanded and BSFC to be optimized.

