FY 2018 Vehicle Technologies Program-Wide Funding Opportunity Announcement Selections DE-FOA-0001919

Applicant	Location (city, state)	Project Title/Description	Federal Share		
Low-Cobalt Active Cathode Materials for Next-generation Li-ion Batteries					
The United States Army Tank Automotive Research, Development, and Engineering Center (TARDEC) is partnering with DOE and is contributing \$1.8 million towards work in this area.					
Cabot Corporation	Billerica, MA	Aerosol manufacturing technology for production of low-cobalt lithium-ion battery cathodes	\$2,989,057		
NexTech Materials, Ltd. dba Nexceris, LLC	Lewis Center, OH	Cobalt-free lithium manganese nickel titanium oxygenate spinel cathodes for next generation lithium-ion batteries	\$2,466,547		
Oak Ridge National Laboratory	Knoxville, TN	Cobalt-free aluminum iron nickelate cathode materials for next generation lithium-ion batteries.	\$2,100,000		
Penn State University Park	University Park, PA	High-performance coated low-cobalt cathode materials for lithium-ion batteries	\$1,952,017		
University of California: San Diego	La Jolla, CA	Cobalt free cathode materials and novel architectures	\$2,500,000		
University of California: Irvine	Irvine, CA	Enhancing oxygen stability in low-cobalt cathode materials	\$2,500,000		
University of Texas at Austin	Austin, TX	High-nickel cathode materials for high-energy, long- life, low-cost lithium-ion batteries	\$2,400,000		
Plug-In El	ectric Drive Vehicle I	Extreme Fast Charging Program (in support of EISA 131)			
Electric Power Research Institute, Inc.	Knoxville, TN	Modular, interoperable extreme fast charging system with direct connection to medium voltage grid	\$3,201,500		
Missouri University of Science and Technology	Rolla, MO	Enabling Extreme Fast Charging with Energy Storage	\$2,915,377		
North Carolina State University	Raleigh, NC	Intelligent, grid-friendly, modular extreme fast charging system with solid-state DC protection	\$2,675,952		
	Electric Vehicl	e Charging Infrastructure Cybersecurity			
ABB Inc.	Raleigh, NC	Real-time cyber-attack and mitigation system protecting electric vehicles, charging equipment, and the grid	\$1,676,979		
Electric Power Research Institute, Inc.	Knoxville, TN	Open-source cybersecurity architecture for electric vehicle charging to provide retrofitable and scaleable security solutions	\$2,000,000		
Virginia Polytechnic Institute and State University	Blacksburg, VA	Hardware and software based on gaming theory to provide charging security for electric vehicles, extreme fast chargers, and the grid	\$2,500,000		
Materials					
Ford Motor Company	Dearborn, MI	Multiscale modeling of corrosion and oxidation performance and impact on high-temperature fatigue of automotive exhaust manifold components	\$1,500,000		

Applicant	Location (city, state)	Project Title/Description	Federal Share
Michigan State	East Lansing, MI	Computational model of damage accumulation in	\$967,662
University	3,	adhesives after exposure to water, heat, and sunlight	. ,
Oak Ridge National	Knoxville, TN	Machine learning and supercomputing to predict	\$1,500,000
Laboratory		corrosion/oxidation of high-performance valve alloys Open source multiscale model for stainless steel	+
University of Florida	Gainesville, FL	alloys in high temperature environments	\$1,498,605
		Development of multi-scale computational models to	
University of Michigan	Ann Arbor, MI	predict corrosion in joints between aluminum and	\$1,500,000
	,	steel	
Worcester Polytechnic	Worcester, MA	Development of predictive models for corrosion	\$1,499,612
Institute	1	behavior in joints between magnesium and aluminum	+-,,
		Technology Integration	
American Center for	Vnsilanti MI	Fuel-efficient platooning in mixed traffic highway	\$2.447.271
Mobility	Ypsilanti, MI	environments	\$2,447,271
Argonne National		Maximizing mobility energy productivity at Chicago	
Laboratory	Lemont, IL	O'Hare using distributed sensing and high	\$3,184,770
·		performance computing	
Carnegie Mellon	Pittsburgh, PA	Drones, delivery robots, driverless cars, and intelligent curbs for increasing energy productivity of	\$1,502,632
University	Tittsburgh, TA	first/last mile goods mo vement	71,302,032
		Understanding and improving energy efficiency of	
Carnegie Mellon	Pittsburgh, PA	regional mobility systems leveraging system-level	\$1,000,000
University		data	
Center for Sustainable	San Diego, CA	Multi-unit dwelling plug-in electric vehicle charging	\$1,500,000
Energy	-0-,-	innovation pilots in multiple metropolitan areas	, , , , , , , , , ,
Chattanooga Area Regional Transportation	Chattanooga, TN	High-dimensional data-driven energy optimization for	\$760,868
Authority	Chattanooga, TN	multi-modal transit agencies	
		Mobility and energy improvements realized through	
Colorado State	Fort Collins, CO	prediction-based vehicle powertrain control and	\$828,663
University		traffic management	
Cummins Inc.	Columbus, IN	Advancing platooning with advanced driver assisted	\$2,500,000
		systems control integration and assessment	<i>ϕ=,σσσ,σσσ</i>
Ford Motor Company	Dearborn, MI	Micro-transit/public transit for coordinated multi- modal movement of people	\$2,000,000
Metropolitan Energy		EVSE Innovations: pairing EV infrastructure with	
Center	Kansas City, MO	streetlight charging in city right of way	\$1,215,708
National Renewable	0.11.00	Advancing transportation hubs' efficiency using novel	45.000.000
Energy Laboratory	Golden, CO	analytics at Dallas-Fort Worth airport	\$5,000,000
OnTo Technology LLC	Bend, OR	Improved safety and reduce cost in handling and	\$500,000
OHTO TECHNOLOGY LLC		transporting reclaimed lithium-ion batteries	7500,000
Purdue University	West Layfette, IN	Multi-modal trip scheduling in real-time platform to	\$949,984
	College Park, MD	optimize energy efficient travel demand Transportation energy analytics dashboards to allow	\$1,000,000
University of Maryland: College Park		real-time optimization of traffic operations and	
		transportation planning to reduce energy	
University of North	Charlotte, NC	Solutions for curbside-charging electric vehicles for	\$942.757
Carolina at Charlotte	Charlotte Charlotte, NC	planned urban growth	\$942,757

Applicant	Location (city, state)	Project Title/Description	Federal Share	
University of Washington	Seattle, WA	Technology integration to demonstrate efficient urban goods delivery system	\$1,500,000	
Co-Optimization of Engines and Fuels				
Auburn University	Auburn, AL	Bio-production and evaluation of renewable butyl acetate as a desirable bio-blendstock for diesel fuel	\$1,999,990	
Hyundai-Kia America Technical Center, Inc.	Superior Township, MI	Co-optimized, mixed-mode gasoline compression ignition/spark-ignition engine system to improve fuel economy	\$2,169,391	
SUNY University at Stony Brook	Stony Brook, NY	Naphthenic biofuel-diesel blend for optimizing mixing controlled compression ignition combustion	\$1,487,112	
University of Massachusetts Lowell	Lowell, MA	Renewable fuel additives from woody biomass	\$1,001,932	
University of Michigan	Ann Arbor, MI	Tailored Bio-blendstocks with Low Environmental Impact to Optimize MCCI Engines	\$2,000,000	
University of Wisconsin- Madison	Madison, WI	Mono-ether and alcohol bio-blendstocks to reduce the fuel penalty of mixing controlled compression ignition engine aftertreatment	\$1,499,894	
Engines/Fuels: Off-road Applications				
Caterpillar Inc.	Mossville, IL	Ultra-efficient diesel engine for off-road vehicles, with integrated mechanical energy storage	\$3,441,005	

Additional Selection from the DE-FOA-0001815: Energy Efficiency R&D for Fluid-Power Systems in Off-Road Vehicles Funding Opportunity Announcement

Applicant	Location (city, state)	Project Title/Description	Federal Share
Regents of the University of Minnesota	Minneapolis, MN	Hydraulic electric architectures for mobile machines.	\$1,504,680