

Extreme Fast Charging Lithium Ion Batteries

PI: Edward Buiel Coulometrics, LLC May 12, 2020

Project ID: BAT398

This presentation does not contain any proprietary, confidential, or otherwise restricted information

 \bigcirc

 \odot

Overview – Coulometrics XFC Program

- Timeline
 - Start date: August 7, 2018
 - End date: August 6, 2020
 - Percent complete: 85%
- Budget
 - Total Project Funding
 - DOE share: \$1,000,000
 - Coulometrics: \$250,000
 - Funding:
 - FY 2018: \$312,500
 - FY 2019: \$625,000
 - FY 2020: \$312,500

- Barriers
 - Energy/Power Density
 - Lithium Plating
 - Cost
- Partners
 - None

Relevance

- To achieve extreme fast charging LIBs, methods to overcome lithium plating on the anode without sacrificing energy density must be found
- This program focuses on building state-of-theart cylindrical LIBs and optimizing:
 - Anode composition
 - Electrolyte composition
 - Cell design
 - Cathode composition

Milestones:

	Milestone	Туре	Description			
\checkmark	Anode Development Milestone	Technical	All anode materials listed in BP1&2 have been tested in 18650s and best materials are down-selected for XFC cell optimization.			
\checkmark	Electrode Development Milestone	Technical	All composite electrode materials from BP1&2 have been tested in 18650s and best materials are down-selected for XFC cell optimization.			
\checkmark	Electrolyte and Additives Milestone	Technical	All electrolyte and additives from BP1&2 have been tested in 18650s and best materials are down-selected for XFC cell optimization.			
\checkmark	Cell Design Milestone	Technical	All cell designs from BP1&2 have been tested in 18650s and best materials are down-selected for XFC cell optimization.			
\checkmark	DOE Cell Delivery	Technical	Produce 18 cells (>2Ah) and deliver to the DOE by M24 containing the XFC technology developed to date.			
\checkmark	Go/No Go Decision Title	Go/No Go	Cells assembly with down-selected anode, electrode, electrolyte, and cell design at end of M22. This optimized configuration must achieve the FOA objective of 144Wh/L after 500 XFC (6C/1C cycles).			

Approach Methodology

- Focus on methods to reduce Liplating
- Use combined strategy to optimize:
 - Anode
 - Electrolyte
 - Cathode
 - Cell design

Coulometrics

Approach Testing Strategy

- Onset of Lithium Plating Test
 - CC charge/discharge
 - Fixed C-rate for cell group
 - Look for capacity loss after 350h and resistance change in cells
- Allows you to amplify lithium plating

Example cell build quality

Significant groups of cells produced with different anode compositions – limited effect on charge rate.

Cell Spec	Anode ID	Cathode Material	Anode Areal Capacity [mAh/cm ²]	Anode Density [g/cc]	Maximum Charge Rate	Capacity Loss [%]		
Gen 1 Power Cells								
1801-A01	A17-0106	NCA	2.87	1.36	3.00C	2.59 @ 3C		
1801-A02	A17-0123	NCA	2.88	1.36	4.00C	4.97 @ 4C		
1801-A03	A17-0094	NCA	3.47	1.36 4.00C		2.06 @ 4C		
1801-A03e	A17-0094	NCA	3.47	1.36	4.00C	8.43 @ 4C		
1801-A04	A17-0111	NCA	3.47	1.36	3.00C	6.67 @ 3C		
1803-A03	A18-0011	NCA	2.15	1.35	2.00C	7.02 @ 2C		
1804-A01	A18-0019	NCA	2.00	1.35	2.00C	5.72 @ 2C		
1805-A09	A18-0033	NCA	2.15	1.35	2.00C	3.18 @ 2C		

Anode coating weight reduced, and anode density increased. Anode composition showing limited impact.

Cell Spec	Anode ID	Cathode Material	Anode Areal Capacity [mAh/cm ²]	Anode Density [g/cc]	Maximum Charge Rate	Capacity Loss [%]		
Gen 2 Power Cells								
1808-X01	A17-0114	NMC622 (CNT)	2.15	1.4	3.00C	5.76 @ 3C		
1808-X02	A17-0114	NMC622	2.15	1.4	3.00C	4.79 @ 3C		
1808-X03	A18-0069	NMC622	2.15	1.4	3.00C	7.58 @ 3C		
1808-X05	A18-0057	NMC622	2.15	1.4	3.00C	4.39 @ 3C		
1810-X01	A18-0102	NMC622	2.15	1.4	4.00C	5.46 @ 4C		
1810-X02	A18-0106	NMC622	2.15	1.4	3.00C	7.04 @ 3C		
1810-X03	A18-0109	NMC622	2.15	1.4	4.00C	2.66 @ 4C		
1901-X04	A19-0009	NMC622	2.15	1.4	3.00C	5.09 @ 3C		
1901-X06	A19-0010	NMC622	2.15	1.4	<4.00C	1.17 @ 3C		

9

Gen 2.5 power cells reduced anode loading achieves 6C charge rate needed to Pass DOE XFC Test.

Gen 3 power cells show reduction in anode coating weight achieves up to 9C charge rate.

Cell Spec	Anode ID	Cathode Material	Anode Areal Capacity [mAh/cm ²] Anode Density [g/cc]		Maximum Charge Rate	Capacity Loss [%]		
Gen 3 Power Cells								
1802-A01	A17-0106	NCA	2.87	1.36	9.00C	2.13 @ 9C		
1802-A02	A17-0123	NCA	2.88	1.36	9.00C	2.06 @ 9C		
1811-X01	A18-0042	NMC622	2.15	1.4	6.00C	TBD		
1811-X02	A18-0042	NMC622	2.15	1.4	6.00C	TBD		
1812-X01	A18-0042	NMC622	2.23	1.4	6.00C	TBD		

Technical Accomplishments and Progress Cell design.

- Tabs cause issues
 - Current density and voltage
 - Non-uniform through electrode with position from tab
 - Tabs are heat transfer path
 - Leads non-uniform heat distributions
- New electrode design eliminates tab issues
 - Causes a few new ones
 - No production equipment
 - Different production equipment
 - Still learning

Continuous tab anode and cathode

Anode Tabs	Cathode Tabs	ACIR [mΩ]
2	1	13.0
New Design Anode	1	9.1
2	New Design Cathode	10.9
New Design Both	New Design Both	7.6

Technical Accomplishments and Progress Gen3 – Power cell featuring continuous tabs.

Technical Accomplishments and Progress Gen3 – with 10% SiOx (no significant improvement)

Gen3 – with 10% SiOx (no significant improvement)

Technical Accomplishments and Progress XFC Testing

Cell Spec	Anode ID	Cathode Material	Anode Areal Capacity [mAh/cm ²]	Anode Density [g/cc]	Weight [g]	Initial DchgQ [Ah]	Initial Energy [Wh]	Specific Energy [Wh/kg]	Energy Loss [Avg %]	
Gen 2 Power Cells										
1904-X05 Procedure 0	G19-0005	NMC622	2.19	1.4	41.925	1.449	5.237	125.048	46.74	
1904-X05 Procedure 1	G19-0005	NMC622	2.19	1.4	41.925	1.276	4.556	108.675	36.86	
1904-X05 Procedure 2	G19-0005	NMC622	2.19	1.4	41.925	1.359	4.871	116.048	40.54	

Technical Accomplishments and Progress XFC Testing: 1904-X05 P0 (Gen 2 Power Cell)

Technical Accomplishments and Progress XFC Testing: 1904-X05 P1 (Gen 2 Power Cell)

Coulometrics

Technical Accomplishments and Progress XFC Testing: 1904-X05 P2 (Gen 2 Power Cell)

Future Work

• FY20 Final Work (Underway):

• Complete full cell homologation of proven design improvements for final report and cell deliverable milestone for DOE.

