

Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines

> Robert Wagner, Scott Sluder Oak Ridge National Laboratory

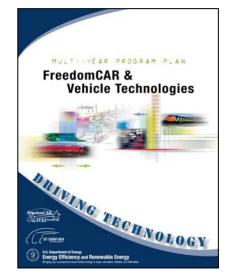
Diesel Engine-Efficiency and Emissions Research Conference August 21, 2006 – Detroit, MI USA

> Sponsor: U.S. Department of Energy, OFCVT Program Managers: Gurpreet Singh, Kevin Stork

U. S. Department of Energy

Project Overview

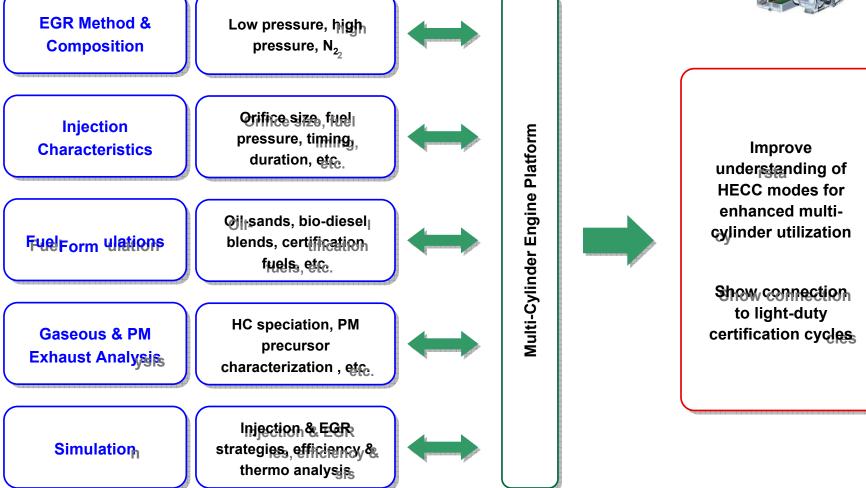
Motivation

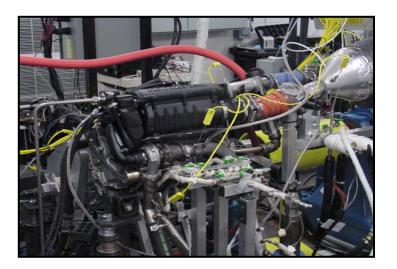

Advanced combustion modes show promise as potential paths for meeting 2010 and beyond efficiency and emissions goals.

Objective of this Activity

Investigate potential near-term technologies for expanding usable speed-load range and to evaluate potential benefits and limitations for achieving HECC in light-duty diesel engines.

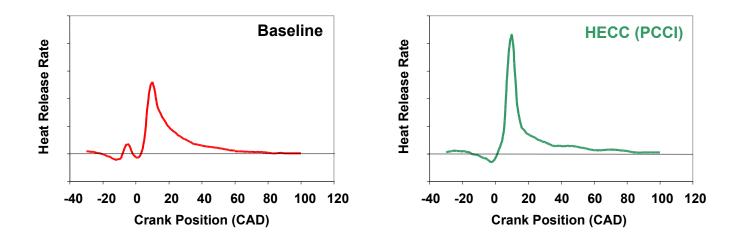
Complementary Activities:


- Fuel property effects on diesel high efficiency clean combustion. (parallel activity funded by Fuels Technology Subprogram, PI Scott Sluder)
- Multi-Component Combustion Simulation Tools for Alternative Fuels. (internally funded in collaboration with University of Wisconsin, PI Johney Green)


Comprehensive Research Approach

Light-duty research engine

- Mercedes 1.7-L engine
 - Added EGR cooler, low pressure EGR loop, and throttle.
 - All other components are production.
- Equipped with rapid prototyping engine control systems.
- All four cylinders instrumented with pressure transducers.
- Extensive exhaust chemistry and PM analysis available.


Number of Cylinders	4
Injector Holes	6
Injector Hole Diam, μm	169, 100
Bore, mm	80.0
Stroke, mm	84.0
Compression Ratio	19.0
Piston Geometry	Re-entrant bowl
Rated Power, kW	66
Rated Torque, Nm	180

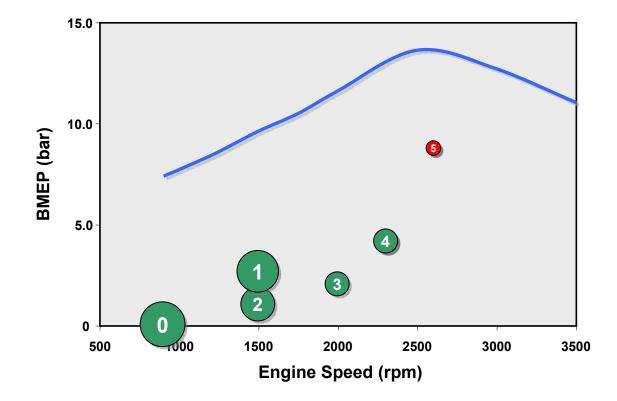
Premixed CI approach used to achieve HECC

Baseline conditions approximated OEM operating parameters.

HECC modes achieved with

- Higher EGR rate
- Higher fuel rail pressure (400-1000 bar)
- **Proper combustion phasing** (single event, timing before but near TDC)
- Example heat release profiles at 1500 rpm, 2.6 bar BMEP

Reminder: HECC is by definition high efficiency and low NOx & PM


Experiments made use of engine conditions developed by Ad Hoc Working Group

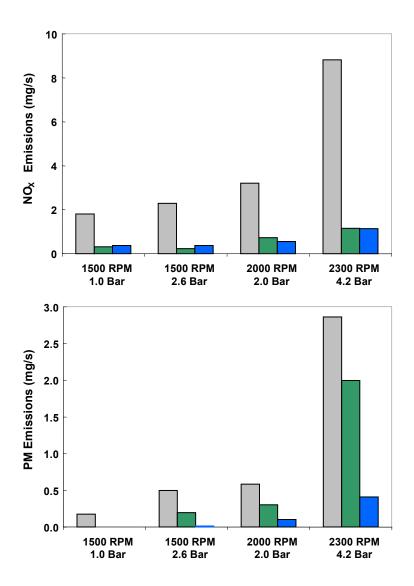
- Considered representative speed-load points for light-duty diesel engines.
- Does not include cold-start or other transient phenomena.
- Represents method for estimating magnitude of drive-cycle emissions.

Point	Speed / Load	Weight Factor	Description
0	900 rpm / 0.1 bar	700	ldle
1	1500 rpm / 1.0 bar	400	Catalyst transition temperature
2	1500 rpm / 2.6 bar	600	Low speed cruise
3	2000 rpm / 2.0 bar	200	Low speed cruise with slight acceleration
4	2300 rpm / 4.2 bar	200	Moderate acceleration
5	2600 rpm / 8.8 bar	75	Hard acceleration

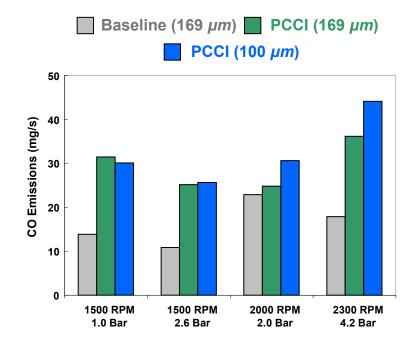
For more information SAE 1999-01-3475, SAE 2001-01-0151, SAE 2002-01-2884

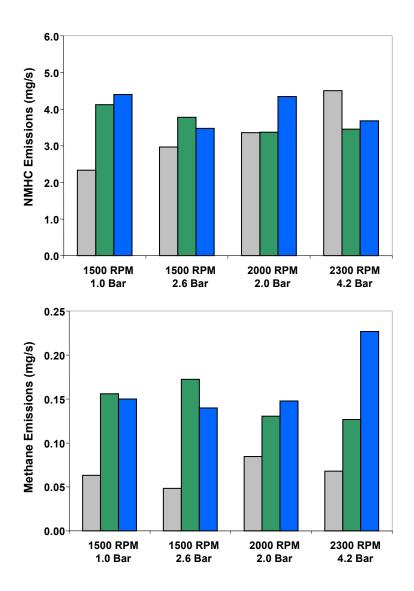
Combination of LP & HP EGR for achieving HECC

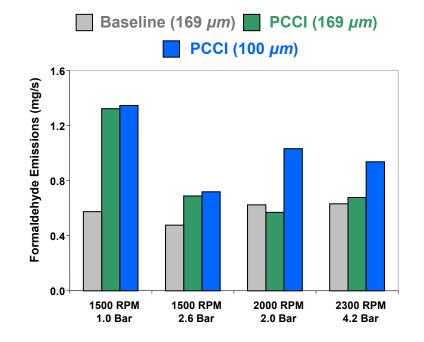
- HP EGR used to achieve Modes 0 to 3.
- LP EGR used to achieve Mode 4.
- BSFC equivalent to baseline operation.
- Emissions summarized in upcoming slide.

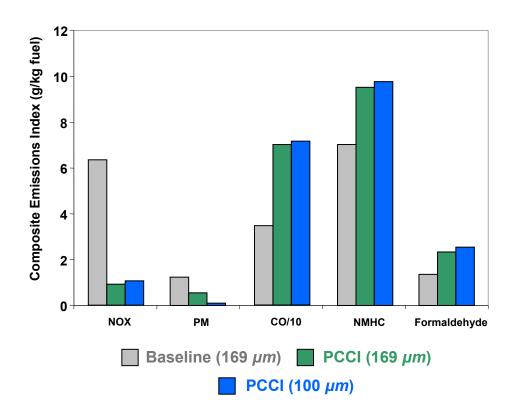


Injector orifice size (i.e., increased atomization & mixing) investigated at four modal conditions


- Injector nozzle sizes of 169 μm (OEM) and 100 μm , otherwise injectors were identical.
- Fuel pressure same for PCCI conditions with both orifice diameters fuel pulse width adjusted to equalize fuel rate.
- PCCI injection pressures higher than OEM.
- EGR is <u>combination</u> of low & high pressure (combination enabled higher load points).
- BSFC is equivalent for all OEM, PCCI comparisons (*i.e.*, HECC).

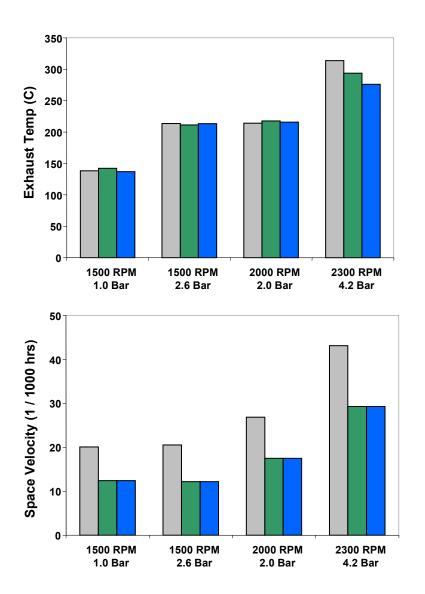

Smaller orifice diameter enhances PM benefits of PCCI


- NOx emissions similar for both injectors.
- PM emissions significantly lower for 100 μm.
- CO emissions similar.


Smaller diameter orifice did not mitigate high HC characteristics of PCCI

- Effect on HC emissions varies with speed-load condition.
- Overall much higher for PCCI operation.
- Can after-treatment take care of the HC emissions?

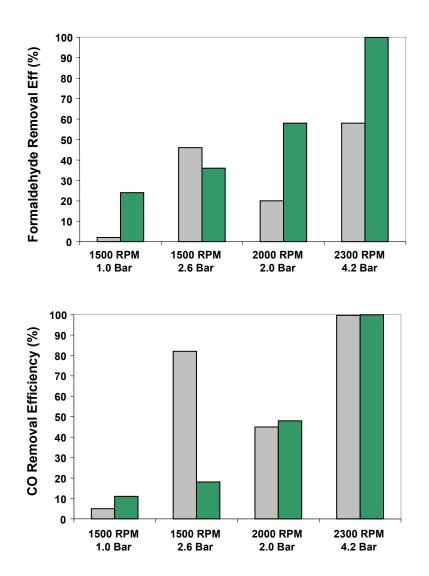
Composite indices highlight overall improvements in NOx and PM emissions at the expense of HCs and CO



- BSFC equivalent for baseline and PCCI modes.
- Significant reduction in PM observed for 100 μm injectors.
- Similar HC and CO levels for both orifice diameters.
- How do we deal with the high HCs and CO?

Reminder – Purpose is to provide a metric indicative of cycle average results.

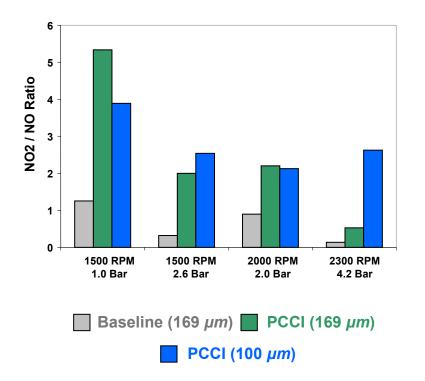
What does this mean with regards to after-treatment?



Baseline (169 μm) PCCI (169 μm)
PCCI (100 μm)

- Exhaust temperatures comparable for all modes.
- Achieving high oxidation effectiveness may be a challenge due to low temperatures.
- Space velocity lower for PCCI modes due to high EGR.

Formaldehyde removal not sufficient for baseline or PCCI


(Factory MB silicon-carbide DPF for A-Class)

Baseline (169 μm) **PCCI** (169 μm)

- Formaldehyde removal is <u>not</u> sufficient for baseline or PCCI.
- CO removal sufficient for baseline and PCCI.
 - Standard relatively high as compared to other pollutants
- Any other issues?

What are implications for NOx after-treatment?

- NOx in PCCI modes dominated by NO₂.
- Shift toward NO₂ is consistent with lower flame temperature.
- May be beneficial to NOx adsorbers, especially at lower exhaust temperatures.
- May <u>not</u> be beneficial to SCR due to high N₂O production for ratios > 1.
- After-treatment may need to accommodate wide variation in ratio (especially if mode switching is required).

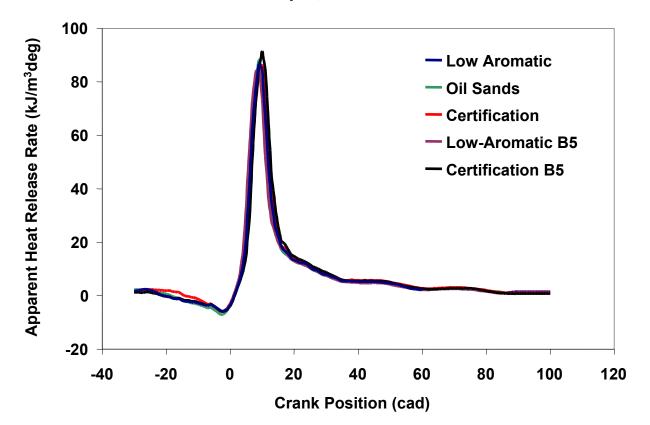
Fuel formulation investigated for achieving HECC operation

- Certification fuel (CPChem)
- Low-aromatic Tier 2 certification fuel (CPChem)
- Oil Sands fuel (from Shell Canada)
- SME bio-diesel (World Energy) 5% blends with certification and low-aromatic

Fuel "Similarities"

Fuel "Differences"

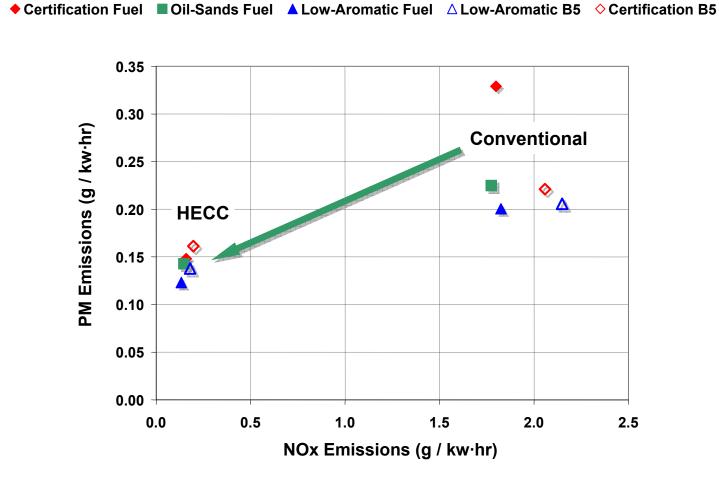
- Cetane 47.3 – 49.9
- Heating Value 42.8 – 43.1 MJ/kg
- Specific Gravity 0.830 – 0.845
- Viscosity
 2.27 2.32 cs


- Sulfur
 13 386 PPMw
- Aromatics
 9.0 30.6 Vol%
- Polynuclear Aromatics 0.7 – 10.0 Wt%
- Olefins
 0.3 2.0 Vol%

15

Oxygen
 0.0, 0.6% B5 Blends

Heat release profiles and SOC similar for all five fuels



1500 rpm, 2.8 bar BMEP

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

HECC operation achieved for all five fuels for this operating condition

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Fuel formulation observations

- Combustion characteristics and engine efficiency similar for the five fuels in this study.
- Maximum HECC BMEP similar no obvious opportunity for significant load expansion.
- Difficult to separate effects arising from differences in aromatics and distillation with small number of fuels.
- PM benefit of low-aromatic and 5% bio-diesel lowaromatic blend observed for HECC operation.
- Reductions in HC, H₂CO, and CO emissions possible in HECC modes through fuel reformulation (not shown).

Conclusions

- Low pressure EGR offers PM emissions and load expansion benefits.
- PCCI operation efficiently reduces NOx and PM emissions at expense of CO, HC, and formaldehyde emissions.
- Smaller injector orifice diameter is effective at enhancing PM reduction for PCCI operation.
- After-treatment oxidation will be a challenge for reducing higher HC and CO emissions observed with PCCI operation.
- NOx after-treatment systems used with PCCI operation will need to be more tolerant of wider range of NO₂/NO ratios.
- Fuel formulations investigated did not have a significant effect on ability to achieve HECC operation or HECC speed-load envelope.

On-going and future work

Further understanding of potential efficiency and emissions benefits, as well as enablers, of advanced combustion strategies on multi-cylinder operation and after-treatment technologies.

- Remainder FY 2006 continuation of research shown in this presentation.
- Installation of GM 1.9-L and porting of advanced controller.
 - OEM hardware include EGR cooler, VGT, and throttle.
 - Same geometry investigated at U-Wisconsin and Sandia National Laboratory.
- Installation of variable compression ratio (VCR) version of MB 1.7-L.
 - Potential of CR and dilution for achieving HCCI and PCCI over extended speed-load range in multi-cylinder engine.
- More detailed thermodynamic and exhaust chemistry analysis as well as computer simulation for improved understanding of efficiency opportunities with simultaneous emissions reduction.
- Fuel properties as enablers for HECC operation (ongoing parallel activity funded by Fuels Technology Subprogram).

