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Project Overview


Motivation 
Advanced combustion modes show promise as potential 
paths for meeting 2010 and beyond efficiency and emissions 
goals. 

Objective of this Activity 
Investigate potential near-term technologies for expanding 
usable speed-load range and to evaluate potential benefits and 
limitations for achieving HECC in light-duty diesel engines. 

Complementary Activities: 

•	 Fuel property effects on diesel high efficiency clean combustion. (parallel activity 
funded by Fuels Technology Subprogram, PI Scott Sluder) 

•	 Multi-Component Combustion Simulation Tools for Alternative Fuels. (internally 
funded in collaboration with University of Wisconsin, PI Johney Green) 
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Light-duty research engine 

•	 Mercedes 1.7-L engine 
− Added EGR cooler, low pressure EGR loop, and throttle. 
− All other components are production. 

• Equipped with rapid prototyping engine control systems. 
• All four cylinders instrumented with pressure transducers. 
• Extensive exhaust chemistry and PM analysis available. 

Number of Cylinders 4 

Injector Holes 6 

Injector Hole Diam, μm 169, 100 

Bore, mm 80.0 

Stroke, mm 84.0 

Compression Ratio 19.0 

Piston Geometry Re-entrant bowl 

Rated Power, kW 66 

Rated Torque, Nm 180 



Premixed CI approach used to achieve HECC 

Baseline conditions approximated OEM operating parameters. 

HECC modes achieved with 

• Higher EGR rate 
• Higher fuel rail pressure (400-1000 bar) 

• Proper combustion phasing (single event, timing before but near TDC) 

• Example heat release profiles at 1500 rpm, 2.6 bar BMEP 
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Reminder: HECC is by definition high efficiency and low NOx & PM 



Experiments made use of engine conditions developed by 
Ad Hoc Working Group 

• Considered representative speed-load points for light-duty diesel engines. 
• Does not include cold-start or other transient phenomena. 
• Represents method for estimating magnitude of drive-cycle emissions. 

Point Speed / Load Weight 
Factor Description 

0 900 rpm / 0.1 bar 700 Idle 

1 1500 rpm / 1.0 bar 400 Catalyst transition 
temperature 

2 1500 rpm / 2.6 bar 600 Low speed cruise 

3 2000 rpm / 2.0 bar 200 Low speed cruise with 
slight acceleration 

4 2300 rpm / 4.2 bar 200 Moderate acceleration 

5 2600 rpm / 8.8 bar 75 Hard acceleration 

For more information SAE 1999-01-3475, SAE 2001-01-0151, SAE 2002-01-2884 



Combination of LP & HP EGR for achieving HECC
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•	 HP EGR used to achieve 
Modes 0 to 3. 

•	 LP EGR used to achieve 
Mode 4. 

•	 BSFC equivalent to 
baseline operation. 

•	 Emissions summarized 
in upcoming slide. 
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Injector orifice size (i.e., increased atomization & mixing) 
investigated at four modal conditions 

•	 Injector nozzle sizes of 169 μm (OEM) and 100 μm, 
otherwise injectors were identical. 

•	 Fuel pressure same for PCCI conditions with both 
orifice diameters – fuel pulse width adjusted to 
equalize fuel rate. 

•	 PCCI injection pressures higher than OEM. 
•	 EGR is combination of low & high pressure 

(combination enabled higher load points). 
•	 BSFC is equivalent for all OEM, PCCI comparisons 

(i.e., HECC). 
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Smaller orifice diameter enhances PM benefits of PCCI 
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Smaller diameter orifice did not mitigate high HC 
characteristics of PCCI 
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•	 Effect on HC emissions varies 
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Composite indices highlight overall improvements in NOx 
and PM emissions at the expense of HCs and CO 
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•	 Significant reduction in PM 

observed for 100 μm 
injectors. 

•	 Similar HC and CO levels for 
both orifice diameters. 

•	 How do we deal with the high 
HCs and CO? 

NOX PM CO/10 NMHC Formaldehyde 
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Reminder – Purpose is to provide a metric indicative of cycle average results. 
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What does this mean with regards to after-treatment?
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Formaldehyde removal not sufficient for baseline or PCCI 
(Factory MB silicon-carbide DPF for A-Class) 
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What are implications for NOx after-treatment?
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•	 NOx in PCCI modes dominated 
by NO2. 

•	 Shift toward NO2 is consistent 
with lower flame temperature. 

•	 May be beneficial to NOx 
adsorbers, especially at lower 
exhaust temperatures. 

•	 May not be beneficial to SCR 
due to high N2O production for 
ratios > 1. 

•	 After-treatment may need to 
accommodate wide variation in 
ratio (especially if mode switching is 
required). 
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Fuel formulation investigated for achieving HECC 
operation 

• Certification fuel (CPChem) 
• Low-aromatic Tier 2 certification fuel (CPChem) 
• Oil Sands fuel (from Shell Canada) 
• SME bio-diesel (World Energy) 5% blends with certification and low-aromatic 

Fuel “Similarities”	 Fuel “Differences” 

¾ Cetane	 ¾ Sulfur 
47.3 – 49.9	 13 – 386 PPMw 

¾ Heating Value	 ¾ Aromatics 
42.8 – 43.1 MJ/kg	 9.0 – 30.6 Vol% 

¾ Specific Gravity	 ¾ Polynuclear Aromatics 
0.830 – 0.845	 0.7 – 10.0 Wt% 

¾ Viscosity	 ¾ Olefins 
2.27 – 2.32 cs	 0.3 – 2.0 Vol% 

¾ Oxygen 
0.0, 0.6% B5 Blends 
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Heat release profiles and SOC similar for all five fuels
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HECC operation achieved for all five fuels for this 
operating condition 
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Fuel formulation observations 

•	 Combustion characteristics and engine efficiency 
similar for the five fuels in this study. 

•	 Maximum HECC BMEP similar – no obvious 
opportunity for significant load expansion. 

•	 Difficult to separate effects arising from differences 
in aromatics and distillation with small number of 
fuels. 

•	 PM benefit of low-aromatic and 5% bio-diesel low-
aromatic blend observed for HECC operation. 

•	 Reductions in HC, H2CO, and CO emissions possible 
in HECC modes through fuel reformulation (not 
shown). 
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Conclusions 

•	 Low pressure EGR offers PM emissions and load expansion benefits. 

•	 PCCI operation efficiently reduces NOx and PM emissions at expense of 
CO, HC, and formaldehyde emissions. 

•	 Smaller injector orifice diameter is effective at enhancing PM reduction for 
PCCI operation. 

•	 After-treatment oxidation will be a challenge for reducing higher HC and 
CO emissions observed with PCCI operation. 

•	 NOx after-treatment systems used with PCCI operation will need to be 
more tolerant of wider range of NO2/NO ratios. 

•	 Fuel formulations investigated did not have a significant effect on ability 
to achieve HECC operation or HECC speed-load envelope. 
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On-going and future work 

Further understanding of potential efficiency and emissions benefits, as 
well as enablers, of advanced combustion strategies on multi-cylinder 
operation and after-treatment technologies. 

•	 Remainder FY 2006 continuation of research shown in this presentation. 

•	 Installation of GM 1.9-L and porting of advanced controller. 
− OEM hardware include EGR cooler, VGT, and throttle. 
− Same geometry investigated at U-Wisconsin and Sandia National Laboratory. 

•	 Installation of variable compression ratio (VCR) version of MB 1.7-L. 
−	 Potential of CR and dilution for achieving HCCI and PCCI over extended speed-load 

range in multi-cylinder engine. 

•	 More detailed thermodynamic and exhaust chemistry analysis as well as 
computer simulation for improved understanding of efficiency opportunities 
with simultaneous emissions reduction. 

•	 Fuel properties as enablers for HECC operation (ongoing parallel activity 
funded by Fuels Technology Subprogram). 
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