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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government or any
agency thereof.
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Executive Summary

Our transportation system is changing. New, disruptive technologies such as connected and automated vehicles
are being developed and will soon be introduced to the market. Innovative business models that provide car-
sharing and ride-hailing services give new mobility options to consumers. Freight transport is evolving to meet
the demands of a retail sector that is increasingly based on e-commerce. This shifting mobility landscape may
offer opportunities to improve the economic and energy productivity of the U.S. transportation sector, while
advancing the safety, affordability, and accessibility of transportation for all Americans.

During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office
(VTO) created the Energy Efficient Mobility Systems (EEMS) Program to understand the range of mobility
futures that could result from these disruptive technologies and services, and to create solutions that improve
mobility energy productivity, or the value derived from the transportation system per unit of energy consumed.
Increases in mobility energy productivity result from improvements in the quality or output of the
transportation system, and/or reductions in the energy used for transportation.

EEMS Program activities during FY 2019 focused on analytical research to understand the impacts that new
mobility technologies and services will have at the vehicle, traveler, and overall transportation system-level.
This research included the development of vehicle and transportation system simulation models and tools to
evaluate the complex interactions among the various actors within the mobility landscape, analysis of
empirical data to characterize which solutions may provide the largest benefits, and development of new
control systems and algorithms that use vehicle connectivity and automation to improve the performance and
efficiency of individual vehicles as well as the overall traffic system.

This document presents a brief overview of the EEMS Program and documents progress and results for
projects within four of the five EEMS activity areas: (1) the SMART (Systems and Modeling for Accelerated
Research in Transportation) Mobility Lab Consortium, (2) High Performance Computing and Big Data
Solutions for Mobility Data, (3) Advanced R&D Projects conducted by industry and academia, and (4) Core
Modeling, Simulation, and Evaluation, Similarly, the remaining EEMS activity area — (5) Living Labs
(managed under VTO’s Technology Integration Program). Each of the individual progress reports provide a
project overview and highlights of the technical results.

Executive Summary Xiii
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Vehicle Technologies Office Overview

Vehicles move our national economy. Annually, vehicles transport 11 billion tons of freight—about $35
billion worth of goods each day'—and move people more than 3 trillion vehicle-miles.? Growing our economy
requires transportation and transportation requires energy. The transportation sector accounts for
approximately 30% of total U.S. energy needs® and 70% of U.S. petroleum consumption.* The average U.S.
household spends over 15% of its total family expenditures on transportation, making it the most expensive
spending category after housing.’

The Vehicle Technologies Office (VTO) has a comprehensive portfolio of early-stage research to enable
industry to accelerate the development and widespread use of a variety of promising sustainable transportation
technologies. The research pathways focus on fuel diversification, vehicle efficiency, energy storage, and
mobility energy productivity that can improve the overall energy efficiency and efficacy of the transportation
or mobility system. VTO leverages the unique capabilities and world-class expertise of the National
Laboratory system to develop innovations in electrification, including advanced battery technologies;
advanced combustion engines and fuels, including co-optimized systems; advanced materials for lighter-
weight vehicle structures; and energy efficient mobility systems.

VTO is uniquely positioned to address early-stage challenges due to strategic public-private research
partnerships with industry (e.g., U.S. DRIVE, 21 Century Truck Partnership) that leverage relevant expertise.
These partnerships prevent duplication of effort, focus DOE research on critical R&D barriers, and accelerate
progress. VTO focuses on research that industry does not have the technical capability to undertake on its own,
usually due to a high degree of scientific or technical uncertainty, or that is too far from market realization to
merit industry resources.

Annual Progress Report

As shown in the organization chart (below), VTO is organized by technology area: Batteries & Electrification
R&D, Materials Technologies, Advanced Engine & Fuel R&D, Energy Efficient Mobility Systems,
Technology Integration, and Analysis. Each year, VTO’s technology areas prepare an Annual Progress Report
(APR) that details progress and accomplishments during the fiscal year. VTO is pleased to submit this APR for
Fiscal Year (FY) 2019. In this APR, each project active during FY 2019 describes work conducted in support
of VTO’s mission. Individual project descriptions in this APR detail funding, objectives, approach, results, and
conclusions during FY 2019.

! Bureau of Transportation Statistics, Department of Transportation, Transportation Statistics Annual Report 2018, Table 4-1. https://www.bts.gov/tsar.

2 Transportation Energy Data Book 37" Edition, Oak Ridge National Laboratory (ORNL), 2019. Table 3.8 Shares of Highway Vehicle-Miles Traveled by Vehicle
Type, 1970-2017.

3 Tbid. Table 2.1. U.S. Consumption of Total Energy by End-use Sector, 1950-2018.

4 Ibid. Table 1.12. U.S. Transportation Petroleum Use as a Percent of U.S. Petroleum Production, 2018.

3 Ibid. Table 10.1, Average Annual Expenditures of Households by Income, 2016.
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Energy Efficient Mobility Systems Program Overview

Introduction

On behalf of the Energy Efficient Mobility Systems (EEMS) Program of the U.S. DOE’s EERE VTO, we are
pleased to submit this Annual Progress Report (APR) for Fiscal Year (FY) 2019.

The introduction of disruptive transportation technologies and services, such as connected and automated
vehicles, car-sharing, and ride-hailing services, provides new, low-cost mobility options for consumers.
Additionally, the evolving retail sector, shaped by the convenience of online shopping, has resulted in not only
a shift in how we transport and deliver goods, but it has also had ripple effects in personal transportation. This
transforming mobility landscape presents a significant opportunity to improve economic and energy
productivity and advance safety, affordability, and accessibility in the transportation sector.

While these changes in the transportation system can provide benefits to the American public, they also present
risks, challenges, and questions that must be addressed. DOE conducts research to understand how this
transformation will affect transportation energy consumption and identifies opportunities to create more
efficient, affordable, reliable, accessible, and secure transportation options that enhance mobility for
individuals and businesses. Within DOE’s Office of Energy Efficiency and Renewable Energy (EERE), the
EEMS Program is responsible for this research portfolio.

This APR describes work that the EEMS Program conducted during FY 2019 in support of the EEMS Program
goals as described in the following section.

Mission and Goals

The EEMS Program supports VTO’s mission to improve transportation energy efficiency through low-cost,
secure, and clean energy technologies. EEMS conducts early-stage research and development (R&D) at the
vehicle, traveler, and system levels, creating knowledge, insights, tools, and technology solutions that increase
mobility energy productivity for individuals and businesses. This multi-level approach is critical to
understanding the opportunities that exist for optimizing the overall transportation system. The EEMS Program
uses this approach to develop tools and capabilities to evaluate the energy impacts of new mobility solutions,
and to create new technologies that provide economic benefits to all Americans through enhanced mobility.

During FY 2019, the EEMS Program developed an accessibility metric framework known as mobility energy
productivity. Because EEMS aims not only to reduce the energy consumed in the transportation system, but
also to reduce the time and cost associated with moving people and goods while improving access to mobility,
a comprehensive metric that incorporates all three factors (energy, time, and cost) is required. Mobility energy
productivity (MEP) is used as a lens through which the EEMS program can evaluate the mobility impacts that
potential technologies and services may have, and by which program success can be measured as it develops
new mobility solutions.

The EEMS Program works towards achieving three strategic goals in order to reach the program’s overall goal
of identifying critical pathways and developing innovative technology solutions to enable significant
improvements in mobility energy productivity when adopted at scale. Each strategic goal is discrete, but all
three goals are interrelated such that the success in any one goal furthers the achievement of the other two.

STRATEGIC GOAL #1: Develop new tools, techniques, and core capabilities to understand and identify the
most important levers to improve the energy productivity of future integrated mobility systems.

STRATEGIC GOAL #2: Identify and support early stage R&D to develop innovative technologies that enable
energy efficient future mobility systems

Energy Efficient Mobility Systems Program Overview 3
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STRATEGIC GOAL #3: Share research insights, and coordinate and collaborate with stakeholders to support
energy efficient local and regional transportation systems.

Program Organization

To achieve its programmatic goals, the EEMS Program implements five coordinated areas of focus, each with
its own set of projects. As indicated in Table 1, each of these five activity areas directly supports at least one of
the three EEMS strategic goals, and indirectly supports the others. The five activity areas are:

e Systems & Modeling for Accelerated Research in Transportation (SMART) Mobility Laboratory
Consortium

e High-Performance Computing & Big Data
e Advanced R&D Projects

e Core Modeling, Simulation, and Evaluation
e Living Laboratories

SMART Mobility Lab Consortium

The SMART Mobility Lab Consortium is a multi-year, multi-laboratory collaborative dedicated to further
understanding the energy implications and opportunities of advanced mobility solutions. The effort consists of
five pillars of research:

1. Connected and Automated Vehicles (CAVs): Understanding the energy, technology, and usage
implications of connectivity and automation and identifying efficient CAV solutions.

2. Mobility Decision Science (MDS): Understanding the human role in the mobility system, including travel
decision-making and technology adoption in the context of future mobility.

3. Multi-Modal Freight (MMF): Evaluating the evolution of freight movement and understanding the impacts
of new modes for long-distance freight transport and last-mile goods delivery.

4. Urban Science (US): Understanding the linkages between transportation networks and the built
environment, and identifying the potential to enhance access to economic opportunity.

5. Advanced Fueling Infrastructure (AFI): Understanding the costs, benefits, and requirements for fueling
and charging infrastructure to support energy efficient future mobility systems.

The SMART Mobility Lab Consortium supports EEMS Strategic Goal #1 as the program’s primary effort to
create tools and generate knowledge about how future mobility systems may evolve and identify ways to
reduce their energy intensity. The consortium also directly supports Strategic Goal #2 by identifying R&D
gaps that the EEMS Program may address through its advanced research portfolio. The SMART Lab Mobility
Consortium will also generate insights that will be shared with mobility stakeholders, indirectly supporting
Strategic Goal #3.

High Performance Computing and Big Data

The EEMS Program uses the national laboratories’ capabilities in high performance computing (HPC) and big
data analytics to research the application of artificial intelligence (Al) techniques such as machine/deep
learning and data science tools. These efforts assist in the design, planning, and operation of future mobility
systems. HPC helps manage, store, analyze, and visualize conclusions from big data. Al serves to recognize
patterns and extract actionable information to answer transportation-related questions through predictive data
analytics applied to both vehicle/infrastructure (physical) data and human decision-making (behavioral) data.
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The EEMS Program develops and applies the national laboratories’ HPC expertise, machine learning, and big
data science to find solutions to real-world transportation energy challenges. The program’s efforts in this area
include:

The HPC4Mobility initiative establishes projects that partner national lab capabilities with third parties who
have access to data. The initiative is aimed at accelerating the discovery, design, and development of energy
efficient mobility systems by enabling access to computational capabilities and data science expertise in the
DOE laboratories. Projects selected under HPC4Mobility will reduce the time and cost required for mobility
infrastructure planning, decision-making, and enable optimized control of intelligent transportation systems in
real-time.

Additional projects within the Big Data portfolio support the national laboratories to develop the scalable data
science and HPC-supported computational framework needed to build next-generation transportation/mobility
system models and operational analytics. These projects include multi-lab efforts focused on developing
city/regional-scale “digital twins” of the transportation system and applying deep-learning techniques to
support the development of resilient automated vehicle control systems.

HPC4Mobility and Big Data initiatives merge exploratory findings of the SMART Mobility Lab Consortium,
specific data sets from public and private entities, and unparalleled computational and analytical resources.
These resources will solve specific transportation energy challenges faced by cities, states, and regions across
the United States, such as how to plan and operate their transportation systems in a way that improves energy
efficiency, as their populations grow and new mobility options become available. In doing so, it directly
supports Strategic Goals #1 and #2. This activity indirectly supports Strategic Goal #3, as it involves
collaboration with stakeholders in the mobility ecosystem to be successful.

Advanced R&D Projects

The EEMS Program’s Advanced R&D activities focus on innovative, early-stage, and scalable mobility
projects and target system-level opportunities to reduce the energy intensity of the movement of people and
goods. The program partners with industry and academia to research and develop technology solutions that
lead to mobility improvements through advancements in hardware, software, control systems, advanced
sensing and computing, and powertrain components. Competitive funding opportunity announcements (FOAs)
solicit project proposals to develop technology solutions that progress the state of the art towards the EEMS
Program's targets. Through cost-shared cooperative agreements, FOAs provide technology companies the
opportunity to develop innovative and disruptive solutions that the private sector would not otherwise consider
due to their risk or uncertainty of return-on-investment, but which could result in enormous public benefits if
successful. These solicitations may be broad in scope, calling for a wide variety of proposals for technology
development efforts across a range of potential concepts, or may specifically target an explicitly defined
research concept. Additionally, the EEMS Program solicits R&D proposals from the national laboratories
through periodic lab calls and directly initiate targeted projects with individual labs or lab consortia to leverage
specific lab capabilities.

The R&D project portfolio directly supports Strategic Goal #2 by developing innovative technology solutions
for mobility. This activity indirectly supports Strategic Goals #1 and #3 since the results from these R&D
efforts feed into the analytical work to understand the impacts of these new technologies, and are disseminated
to the stakeholder community.

Core Modeling, Simulation, and Evaluation

VTO has successfully conducted hardware evaluations of component and vehicle technologies, developed
vehicle systems models based on the results of these evaluations, and performed simulation and analysis of
potential vehicle powertrain solutions built upon these models. The EEMS Program develops and maintains
these critical capabilities within the national lab system in order to test, evaluate, model, and simulate
advanced components, powertrains, vehicles, and transportation systems. These capabilities include vehicle
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and component test procedure development, highly instrumented hardware evaluation, controls algorithm
validation, high-fidelity physical simulation, and transportation data management and analysis. These
capabilities are critical to the EEMS Program in evaluating the energy and mobility outcomes of future
transportation systems, and other VTO R&D programs in quantifying the performance and efficiency benefits
of specific powertrain technologies under development.

The suite of core VTO evaluation and simulation tools is critical to the EEMS Program’s ability to understand
the impacts of future mobility and directly supports Strategic Goal #1. The tool set is also important in
identifying research opportunities and producing insights to share with mobility stakeholders and indirectly
supports Strategic Goals #2 and #3.

Living Laboratories

EEMS Living Laboratories, led by VTO’s Technology Integration Program, works with cities and stakeholders
to demonstrate and evaluate new mobility technologies in the field and collect data. These projects are an
important feedback mechanism to R&D and provide a source of real-world data to test, validate, and improve
models, simulations, software, and hardware. The EEMS Program coordinates and collaborates with
stakeholders to support city and regional efforts to develop energy efficient transportation systems through key
elements of an implementation strategy: stakeholder engagement, Living Laboratory projects, and technical
assistance.

As the primary insight sharing and stakeholder collaboration element of the EEMS Program, Living
Laboratories directly supports Strategic Goal #3. Additionally, the data collected through the Living Labs
activity is important to the analytical and R&D efforts and indirectly supports Strategic Goals #1 and #2.

The table below shows how the EEMS activities align with the EEMS strategic goals.

Table 1. Alignment of EEMS Activities with Strategic Goals

EEMS STRATEGIC ALIGNMENT

LEGEND
Goal 1: Tools,

Techniques, &
Capabilities to

Goal 2: Early Stage R&D Goal 3: Insight Sharing,
to Develop Innovative Stakeholder Coordination

Understand & Imorove Technology Solutions for and Collaboration on
A = Activity Indirectly Mobilitv Ener P Efficient Future Mobility Local & Regional
Supports Goal Pro dalctivitygy Systems Transportation Systems
SMART Mobility A
HPC/Big Data Analytics ‘
Advanced R&D A A
Core VTO Tools A A
A A

Living Laboratories
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Coordination

The EEMS program coordinates its activities with other federal agencies, industry stakeholders, and other
members of the mobility research community.

Coordination between EEMS and other federal programs focused on connected, automated, and efficient
transportation systems is critically important. DOE was a key contributor to Ensuring American Leadership in
Automated Vehicle Technologies — Automated Vehicles 4.0, a multi-agency report published by the National
Science and Technology Council and the U.S. Department of Transportation in January 2020.¢ EEMS also
participates in planning discussions with various modal administrations within USDOT, including the Federal
Highway Administration (FHWA), Federal Transit Administration (FTA), and the National Highway Traffic
Safety Administration (NHTSA). Coordination with USDOT is critically important due to the linkage between
VTO’s research and development activities to create efficient, secure, and sustainable transportation
technologies, and USDOT’s mission to ensure our nation has the safest, most efficient and modern
transportation system in the world.”

In addition to intergovernmental collaboration with DOT, the EEMS Program coordinates with industry
partners. For example, U.S. DRIVE (“Driving Research and Innovation for Vehicle efficiency and Energy
sustainability”) is a non-binding and voluntary government-industry partnership focused on advanced
automotive and related energy infrastructure technology research and development.® In 2019, U.S. DRIVE
convened a new Vehicle and Mobility Systems Analysis Technical Team (VMSATT), to identify the most
promising areas of pre-competitive mobility research of interest to the government, automotive industry,
energy sector, and utility company partners. Additionally, the EEMS Program coordinates with the medium-
and heavy-duty trucking and freight industry through the 21 Century Truck Partnership (21CTP)?, by
pursuing collaborative research and development to realize its vision for our nation’s trucks and buses to safely
and cost-effectively move larger volumes of freight and greater numbers of passengers while emitting little or
no pollution. The EEMS Program is directly involved with the Operational Efficiency Technical Team within
the truck partnership.

The EEMS Program continually seeks additional high-value opportunities to engage with relevant stakeholders
in order to share EEMS-funded research results and learn from other mobility-related efforts. For example, the
EEMS Program is a governmental sponsor and member of the National Academies/Transportation Research
Board Forum on Preparing for Automated Vehicles and Shared Mobility'?, which brings together public,
private and other research organizational partners to share perspectives about how the deployment of
automated vehicles and shared mobility services may dramatically increase safety, reduce congestion, improve
access, enhance sustainability, and spur economic development. The SMART Mobility Lab Consortium has
also convened an Executive Advisory Board, comprised of experts and decision-makers representing the
automotive industry, technology companies, academia, non-governmental organizations, non-profits, and other
transportation-related associations. This board provides input and review to the research conducted by the
Consortium, and helps ensure the work performed is aligned with a variety of mobility stakeholders.

¢ https://www.transportation.gov/sites/dot.gov/files/docs/policy-initiatives/automated-
vehicles/360956/ensuringamericanleadershipav4.pdf

7 https://www.transportation.gov/about

8 https://www.energy.gov/eere/vehicles/us-drive

? https://www.energy.gov/eere/vehicles/2 1 st-century-truck-partnership

10 http://www.trb.ore/TRBAVSMForum/AVSMForum.aspx
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Project Funding

VTO selects and funds critical research through a combination of competitive funding opportunity
announcement (FOA) selections, and direct funding to its national laboratories. Competitive FOA projects are
fully funded through the duration of the project in the year that the funding is awarded. Funding for direct
funded and competitive award projects are contingent on annual Congressional budget appropriations.

The VTO Technology Integration Program funded and has primary management responsibility for Living
Laboratories projects during FY 2019. Living Laboratories projects are not included in the FY2019 EEMS
APR.

Research Highlights

FY2019 was the third year for Energy Efficient Mobility Systems Program activities, and many of the
Program’s initial research efforts concluded and delivered results this year. The SMART Mobility Lab
Consortium focused on completing individual research projects, and on linking together multiple simulation
models to create a multi-fidelity, end-to-end modeling workflow to capture the complex interactions among
mobility decision-making, technology implementation, mobility service models and modes, land use, and EV
charging infrastructure. This activity produced many research findings and insights about the energy and
mobility impacts of new transportation technologies and services. Two new projects were awarded within
EEMS’ Advanced R&D portfolio in FY2019, and research in the High Performance Computing and Big Data
research area made significant progress. Meanwhile, advancements were made in the modeling, simulation,
evaluation, and data management tools that support the EEMS Program and VTO more broadly. Results,
insights, and progress from these four areas are described in detail through the remainder of this Annual
Progress Report. Selected highlights and accomplishments from these activities are summarized here.

° Through the SMART MOblllty BEV CAV Ridehail BEV CAV Ridehail
Advanced Fueling Infrastructure pillar, o | Y
LBNL and INL used multiple modeling o
tools and analytical methods to design
charging networks and simulate their
use by EVs in specific case studies, in
order to examine the cost/benefit trade-

offs inherent with different approaches |

1500 4

1250

1000 4

Vehicles
Vehicles

to charging infrastructure to serve L

h.uman—.d.rlven apd automated elect.rlc . = oo . —yree

ride-hailing vehicles. In these studies, - iving pickup 5 f St
. . mmm driving-charge | rivibg-charge

parameters defining charging s ;‘d quecing A =g

charging
| idle
|

infrastructure were varied, such as the
number, location, and power level of
charging stations, to determine the
effect on EV use and overall system
cost. The team found that, without
sufficient charging infrastructure, an
automated electric vehicle (AEV) ride-
hail fleet will be impaired by long

mm offline

Distance per hour (1000 mi)
Distance per hour (1000 mi)

. e Figure 1 Operation State of Automated Ride-Hail BEVs with
queues for charging. In a hybrid ride- Sparse (left) and Rich (right) Charging Infrastructure
hailing fleet with both AEVs and

human-driven EVs, charging

infrastructure can make a substantial difference in the ability of the overall fleet to serve customer
demand, though there is a point of diminished returns when increasing the availability of DC fast
charging infrastructure. (I.1.2 — Fueling Infrastructure for Future Shared and Shared-Automated
Vehicles)
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Energy consumption (% Dift))

A CAVs Pillar task performed by LBNL
developed and applied traffic
microsimulation tools to predict the impacts
that connected and automated vehicle
systems will have on traffic and energy
consumption. The team developed a
modeling framework that includes
microscopic traffic models that depict the
interactions among vehicles with adaptive
cruise control (ACC), cooperative adaptive
cruise control (CACC) and manually driven
vehicles, providing a solid foundation for
modeling the car following and lane
changing behavior in mixed traffic with the
CACC operation strategies. The team found
significant benefits of CACC over ACC in
terms of both highway capacity and fuel
consumption — benefits which vary greatly
depending upon market penetration of the
technology. (I1.2.1 — Traffic Microsimulation
of Energy Impacts of CAV Concepts at
Various Market Penetrations)

Another task within the CAVs pillar, led by
ANL, developed and implemented advanced
eco-driving control algorithms for connected
and automated vehicles using RoadRunner,
a multi-vehicle simulation tool also
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Figure 2 Time Series of Fuel Consumption Impacts of ACC
and CACC Vehicles (Upper graph is for CACC cases, Lower

graph is for ACC Cases

developed by the team. The large-scale study showed that automation and connectivity combined with
energy-focused control strategies may result in significant energy savings — up to 20% — although
results are highly dependent on the type of road and driving scenario (highway, suburban, urban,
mixed) and powertrain type (conventional, hybrid, or battery-electric). (I.2.3 — Energy Efficient

Connected and Automated Vehicles)
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Within the Mobility Decision Science pillar, a team led by LBNL, INL, and NREL completed the
WholeTraveler Behavioral Study, a regional survey that aimed to descriptively understand the
relationships between key life decisions and its corresponding impact on transportation. The findings
reveal multiple nuanced relationships among transportation choices and their costs and benefits at the
individual and system levels. An example is e-commerce, which has grown in popularity because of
the time-saving and convenience benefits of ordering with delivery compared to taking a shopping
trip. The team found that, although e-commerce generally replaces more trips than it adds in delivery
activity, there is significant variation across the population in this behavior. Additionally, the team
elucidated the complexities of the interactions between ride-hailing vehicles and other modes such as
transit, with ride-hailing either enabling transit ridership or stealing from it based on factors such as
distance of the traveler from a transit station. (I.3.1 — Whole Traveler Study)
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Figure 4 Degree of Substitution and Supplementation of Delivery for Household Shopping Trips

Mobility Decision Science work led by ANL focused on developing behavioral models as part of
agent-based transportation system simulation tools to better characterize individual traveler and
mobility decisions. This work included the development of a detailed parking structure (e.g.,
locations, rates, and type) into the POLARIS model, enhanced activity generation relevant to the value
of travel time (VOTT) and multitasking opportunities, simulation of transit buses in mixed traffic,
creation of a household-level e-commerce participation model, and incorporation of a vehicle disposal
model for future mobility scenarios. Simulation results for a variety of scenarios (a near-term, high-
sharing, partial-automation Scenario A; a long-term, high-sharing, high-automation Scenario B, and a
long-term, low-sharing, high-automation Scenario C) show the likely modal splits for travelers in the
Chicago metropolitan area. (I.3.5 — Travel Behavior Simulation Modeling in POLARIS)
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ORNL and INL led research within the Multi-Modal Freight pillar of SMART Mobility to understand
the future of freight transport by evaluating the energy impacts of changes in freight delivery in urban
environments due to changes in consumer behavior and new delivery technologies and methods.
Research. The team’s research included an investigation of energy profiles of drones through field and
laboratory testing, and the development of a model to estimate a synthetic fleet population and service
area for two major carriers in Chicago. Results indicate that substantial energy savings are available
from changes in delivery methods, though the overall savings depends heavily on the behavior of
consumers and composition of the light-duty vehicle fleet (e.g., what passenger vehicles are used to
retrieve packages from parcel lockers). (1.4.2 — Optimization of Intra-City Freight Movement with
New Delivery Methods)
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Figure 6 Effect of Parcel Lockers on Total Energy Consumption (Chicago)
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Multi-Modal Freight research led by ANL developed and applied a freight model to evaluate the
impacts of freight transportation on vehicle miles traveled (VMT) and energy consumption. The
results establish the baseline energy and VMT impacts of freight, demonstrating that freight vehicles
have a disproportionately high energy impact (30% of fuel) relative to their VMT (10% of VMT). The
team found that, with projected increases of 24% in truck traffic in the next two decades, increased
market penetration of efficient powertrain technologies can have sizeable impacts on freight energy
consumption, reducing long-term energy use by up to 23—37% compared to the base year in spite of
increased freight demand.

VMT: Retail Purchases Energy Consumption: Retail Purchases
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Figure 7 VMT & Energy Use with Retail Purchasing and Powertrain Efficiency Improvements

Additionally, although e-commerce delivery vehicles create additional truck VMT, e-commerce is
shown to reduce overall retail VMT by up to 56% because each delivery adds just a small amount of
additional distance to an efficient delivery tour, creating net savings by replacing relatively long-distance
shopping trips. Researchers estimated that e-commerce will also reduce net retail transportation energy
use between 16% and 33% in the long term, enhancing the benefits of improved powertrain technologies
(which alone account for 34-46% of long-term energy reduction). (1.4.3 — Energy and Mobility Impact
of Inter/Intra-city Freight Movement using Data-Driven Agent-Based System Simulation)

Within SMART Mobility’s Urban Science pillar, researchers at NREL completed development of the
Mobility Energy Productivity (MEP) metric, a comprehensive metric that reflects energy productivity,
affordability and accessibility of current and future mobility services. As part of this activity, the team
also developed a calculation module that can be integrated into travel demand models to accurately
capture the primary and secondary impacts of new technologies and services on mobility within a
region. (1.5.2 — Mobility Energy Productivity Metric)

-

Figure 8 MEP Maps for Denver, CO (Left: All Modes; Center: Car; Right: Transit/Walk/Bike)
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Within EEMS’ Advanced R&D Portfolio, Clemson University developed a novel anticipative car
following and lane selection algorithm for connected and automated vehicles. The control algorithms,
which use information exchange between CAVs to save energy, reduce braking, and harmonize
traffic, were implemented in traffic microsimulations at different levels of CAV penetration to analyze
energy saving potential, and validated using a Vehicle-in-the-Loop (VIL) testbed to demonstrate the
benefits to real CAVs driven on a test-track. Results show that CAVs using the car-following
algorithm use 8-33% less energy than human-driven vehicles. The team also demonstrated that
vehicles using an optimal lane-selection model could save up to 13.4% of fuel compared to human-
driven vehicles, and up to 20.2% relative to vehicle that do not change lanes, dependent upon
technology penetration and traffic flow. (I11.1.2 — Boosting Energy Efficiency of Heterogeneous
Connected and Automated Vehicle (CAV) Fleets via Anticipative and Cooperative Vehicle Guidance)
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Figure 9 Percent Reduction in Fuel Consumption by Flow Rate and Penetration

Under the Core Modeling, Simulation, and Evaluation activity area, a team led by NREL, PNNL, and
INL completed the first phase of building the Livewire Data Platform, with three objectives: to
provide a platform allowing easy and secure data sharing and discovery making it easy to search and
share transportation and mobility-related data; to create a community that builds partnerships and
collaboration around data rather than competition; and to create a system that allows shared data to
grow in size and complexity as EEMS evolves. The goal for this year was to launch an initial version
of a data sharing website. This was accomplished, and the platform successfully made available 38
datasets from nine projects. The platform allows for three methods of data sharing: as a data hub, by
API, and direct links. (IV.1.1 — Livewire Data Platform)
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Figure 10 The Livewire Data Platform Concept
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e ANL led work under the Core Modeling,
Simulation, and Evaluation activity area
focused improving simulation tools such as
Autonomie and AMBER (Advanced Model-
Based Engineering Repository), and
conducting experiments to generate empirical
data to validate simulation models. The team
developed new vehicle-in-the-loop (VIL)
capabilities to evaluate real vehicle operation
within an emulated traffic environment, and
conducted direct aerodynamic road-load
measurements on-track for platooning
vehicles. Precise, repeatable experiments such
as this are critical to ensuring robust results
from simulation studies of new mobility
technologies. (IV.1.3 — Core Modeling,
Simulation, and Evaluation)
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Project Introduction

Infrastructure has long been a major barrier to battery electric vehicles (BEVs) adoption. Cost-effective
charging infrastructure is crucial to support the future energy efficient transportation systems. The rapid
development and deployment of advanced public charging technologies (e.g., direct current fast charging
(DCFCQ)), coupled with other smart mobility solutions such as vehicle connectivity and shared mobility, will
affect future vehicle ownership and use, electricity generation, and alternative fuel energy market. This will
further result in major changes in the utilization of alternative transportation modes, energy consumption, and
economic activity. Understanding the magnitude and sensitivity of these impacts is key to identifying barriers
and achieving mainstream adoption of BEVs.

Objectives

Within this scope, our objective is to quantify the national energy impact of ride-hailing PEVs as compared
with privately owned PEVs and ride-hailing ICEVs with varying infrastructure support (e.g., Level 2, DCFC,
high power FC). This task helps DOE to understand changes in petroleum and electricity consumption while
providing mobility of service (e.g., ride-hailing) using infrastructure supported electrification. This task aims
to quantify impact of ride-hailing on national energy and carbon emissions of light-duty vehicles at various
ride-hailing demand, infrastructure support, and market penetration of electrified vehicles.
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Approach

Energy consumption and emissions of the national light-duty vehicle fleet is a function of the amount of
vehicle miles traveled (VMT), vehicle efficiency miles per gallon gasoline equivalent (MPGGE), vehicles
market shares (sales), and vehicle survival rates by segment and powertrain technologies. This study separates
LDV to three segments; urban ride-hailing, urban personal vehicles, and non-urban personal vehicles. Vehicle
market shares and survival rates together determines fleet composition. The following sections explains the
assumptions and methodologies used in estimating fleet VMT and fleet composition in more details.

National fleet VMT from 2017 to 2030

National fleet VMT of personal vehicles and ride-hailing vehicles’ service VMT (excluding deadheading) is
assumed to follow Energy Information Administration (EIA) Annual Energy Outlook (AEO) projections [1].
This study focuses on urban areas because ride-hailing vehicles are mainly located and operating in urban
areas in the short-to-middle term [2]. According to the U.S. Census, urban stands for any area with population
more than 50,000 [3]. Using national household travel survey (NHTS) [4], highway statistics [5], and census
data [3], the urban areas were estimated to cover 72% of the total population and 65% of total LDV stock.

Ride-hailing VMT consists of (1) VMT with passengers; (2) VMT without passengers (deadheading or empty
miles); and (3) VMT while out of service (i.e., personal-use miles [not considered in this study because only
full-time ride-hailing drivers were modeled]). (1) VMT with passengers is defined by ride-hailing demand,
which is the percentage of total VMT in urban area that needs to be served by ride-hailing vehicles. (2) Ride-
hailing would affect the total VMT due to induced travel (not considered in this study) and deadheading travel
(considered in the sensitivity analysis) (i.e., when no passenger is present). When ride-hailing demand and the
number of ride-hailing vehicles are low at the 2017 level (e.g., national average, 0.29% of total vehicle miles
traveled), the deadheading miles account for 49% of total travel distance for ride-hailing vehicles according to
RideAustin [6]. In the modeling of national energy and emissions as a function of ride-hailing demand,
deadheading miles were assumed to drop significantly when ride-hailing demand and the number of ride-
hailing vehicles are both high (e.g., 100% of total passenger miles traveled). Literature on this issue is still very
limited. The relationship between ride-hailing demand and deadheading miles, which is affected by driver
behavior, urban layout and traffic conditions, is not well established in the literature. Therefore, for the purpose
of showcasing the spectrum of the potential national energy impact from ride-hailing, when ride-hailing
demand grows from 0.29% to 100%, it was assumed that the deadheading miles percentage of total travel
drops linearly from 49% to 5%.

Composition of the fleet

Fleet composition depends on vehicles market (sales) penetration by powertrain technologies and vehicle
survival rates. The ride-hailing and personal-use vehicle fleets were estimated separately from 2017 to 2030
because they have different survival rates and market composition. BEV share, percentage of ride-hailing
BEVs in ride-hailing fleet is an input. It is estimated based on given ride-hailing demand and average VMT per
ride-hailing vehicle. With the estimated number of ride hailing BEVs, regional simulation provides future
charging coverage optimized to support their travel. Then we quantified charging opportunity for any given
charging coverage, and projected resulting market penetration of personal EVs due to increased charging
opportunity and other factors. Market penetration of vehicle powertrain technologies (except BEVs and
PHEVs) and vehicle fuel efficiencies were assumed to follow the projections made by EIA AEO [1]. Vehicle
survival rate stands for percentage of vehicle remained on road by vehicle age. Fast vehicle turn-over, shorter
survival rate, would lead to more newer vehicles on the road and higher fleet average fuel efficiency.
Assuming the ride-hailing vehicle has similar lifetime VMT as personal vehicle (about 200,000 miles) a full-
time ride-hailing vehicle is assumed to have an average life of seven years. We estimated the survival function
of ride-hailing vehicles using the assumptions of lifetime VMT, annual VMT, and average vehicle age
mentioned above. These estimates are factored into VISION model [7] to estimate the fleet composition.
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National energy consumption and emissions

We estimated the nation’s energy consumption and emission using Argonne’s VISION model. VISION model
[7] is a scenario tool that estimates the energy and emission impacts of advanced fuel and vehicle technologies
in the transportation sector by fuel type, vehicle powertrain type, and vehicle class.

Bottom-up approach

With given number of BEVs and travel demand, the EVI-Pro model [8] was used to estimate the number of
chargers and charging level (e.g., Level 2, DCFC, 150-kW) by location for a given year of the chosen study
area. In EVI-Pro, future charging stations are optimized to serve ride-hailing charging demand based on their
travel pattern and pre-assumed electric range. Using Austin as a case study, EVI-Pro simulated the charging
infrastructure requirements in 2030, which was converted to charging coverage in 2030. By dividing the 2030
coverage by 2017 coverage (i.e., the starting condition), the growth rate in charging coverage needed for
Austin was estimated to support the given electrified ride-hailing fleet size and their charging demand in 2030.
And the growth rate needed in charging coverage for each state was estimated, urban areas only, to support the
same level of electrified ride-hailing fleet size and charging demand. The growth rates were weighted by state
considering their current ride-hailing demand and charging coverage in urban areas. Following charging
opportunity curves developed earlier, we quantified the charging opportunities for personal vehicle by state
with the estimated charging coverage in 2030. Then, the ORNL’s MA3T model was used to project the
personal EV market penetration by state from 2017 to 2030 with the estimated charging opportunity and
simulated average charging level [9]. Other factors affecting EV market penetration are considered in MA3T
model. Finally, using the project market penetration, estimated fleet VMT and fleet composition, the reduction
in petroleum and increase in electricity was quantified due to electrified ride-hailing vehicles using ANL’s
VISION model [7]. Figure 1.1.1.1 shows the overall bottom-up approach.
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Figure 1.1.1.1 Analytical framework of national energy impacts of ride hailing and personal EVs.

Top-down Approach

It is noted that the bottom-up simulation approach is highly region-specific, and dependent on the unique travel
patterns of a given region. It also subject to availability of trip data with origins and destination information.
Therefore, we also developed a top-down approach, based on probability of charging, to mathematically
identify the number of chargers needed with a given ride-hailing BEV fleet size and charging demand using
data such as NHTS. In this approach, the number of daily trip stops in urban areas was first determined and
categorized by population density groups. Then, the charging probability was determined at each population
density group based on distribution of battery SOC and average trip distance. An M/M/c queuing model [10]
was used (the first M: the arrival process is Poisson, the second M: the service times are exponential, and c: the
number of servers), a multi-server queueing model where arrivals form a single queue and are governed by a
Poisson process and service times are exponentially distributed, to estimate the required number of chargers
for each 0.25 x 0.25 mile grid cell. Finally, the charging coverage was quantified as a function of percentage of
total vehicle trips served by ride hailing BEVs and critical battery SOC. Critical battery SOC means that
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vehicles need to be recharged at this level, which could vary by driver, vehicle model, charger level, and
mobility type. After estimating the charging coverage, the charging opportunity curve was used to estimate the
charging opportunities and then project the personal BEV market penetration. Finally, we quantified the
national energy and carbon emissions as a function of ride-hailing demand and the share of BEVs in ride-
hailing fleets.

Results

This year’s annual report highlights the results from top-down approach, as last year’s report showed results
from bottom-up approach. We conducted an analysis using top-down approach by varying ride-hailing demand
and share of BEVs in the ride-hailing fleet and quantified the range of resulting energy consumption and
carbon emissions. Figure 1.1.1.2 shows the percentage of energy reduction in 2030 compared to the baseline in
2030, as a function of ride-hailing demand and BEV market penetration. The baseline means ride-hailing
demand equals to 0.29%, %BEV sales in 2030 is 32.4%, with infrastructure coverage fixed from 2017 to 2030.
Red represents an increase in energy while green indicates a reduction. Ride-hailing vehicle life was assumed
to be seven years.

The impact of charging infrastructure. The right-hand-side chart is the scenario where the charging
infrastructure grows in response to the growing number of ride-hailing EVs, and the left-hand-side chart has
charging infrastructure fixed at 2017 level (in order to be comparable with our high ride-hailing demand case,
charging infrastructure coverage is fixed at 5.3% as Columbus). By comparing both sides, the effect of
charging infrastructure alone was shown, and the resulting reduction in national energy consumption was about
2%.

The impact of ride-hailing and BEV penetration. High annual VMT of ride-hailing leads to faster turnover
rate of vehicles, resulting in newer and more fuel-efficient vehicles in the fleet. As shown in both charts, in a
scenario where ride-hailing demand is high (e.g., 100% of vehicle miles traveled) and BEV market penetration
reaches 74% in 2030, the national energy consumption of LD Vs is expected to reduce by 18.1% compared to
the baseline “~-RH/-Infrastructure” in 2030.

The impact of deadheading is shown in the red zone. When ride-hailing demand grows from 0.29% to
100%, total vehicle miles traveled first increases due to deadheading miles but drops later due to improved
fleet operation efficiency and less deadheading at high ride-hailing demand. The red zone in the chart shows
the increase in energy consumption where ride-hailing demand is around 40-50% and BEV market penetration
is at low levels around 18-40%. Note this result is based on the following assumptions. The total VMT demand
excluding deadheading follows AEO projection, and deadheading trip miles were added to the total VMT
demand. When ride-hailing demand is growing from 0.29% to 100%, the deadheading miles percentage of
total travel drops linearly from 49% to 5%.

Therefore, improved charging infrastructure, faster fleet turnover rate due to ride-hailing, and high BEV
market penetration can significantly reduce national energy consumption of LDVs, with the caveat that
deadheading may compromise the benefits of ride-hailing vehicles when transitioning from a low ride-hailing-
demand market to a high ride-hailing-demand market. Additional information, including sales, total VMT and
ride-hailing VMT (RH VMT) at different ride-hailing demand levels.
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Figure 1.1.1.2 National energy consumption reduction (shown as percentages) as a function of ride-hailing demand, BEV
market penetration, and charging infrastructure. Green means a reduction, yellow means relatively no change, and red
means an increase. (Energy refers to energy consumption for pump-to-wheel).

Figure 1.1.1.3 shows the gasoline consumption and electricity consumption in 2030 for the scenario with
charging infrastructure growth. A significant 54% reduction of gasoline consumption could be achieved when
ride-hailing demand is 100% and at the highest possible sales penetration (74%) and stock penetration (47%)
levels of EVs, resulting in a gasoline consumption of 7.1 quads. Due to an increased vehicle electrification, the
electricity consumption in highway transportation sector can be 97 times of the amount in 2017, resulting in an
electricity consumption of 2.1 quads. To achieve gasoline consumption reductions, results indicate that it is
desirable to have ride-hailing demand of 80% in urban areas and above if BEV market penetration is lower
than 50% in 2030, or a ride-hailing demand of 50% and above if BEV market penetration is higher than 50%
in 2030.
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Figure 1.1.1.3 Energy consumption (quads) in 2030 for the case with charging infrastructure growth: (a) gasoline
consumption (quads); and (b) electricity consumption (quads).

Figure 1.1.1.4 shows the percentage of carbon emissions reduction compared to the baseline “-RH/-
Infrastructure” in 2030, as a function of ride-hailing demand and BEV market penetration. The baseline “-RH/-
Infrastructure” means ride-hailing demand equals to 0.29%, %BEV sales in 2030 equals to 32.4%, with
infrastructure coverage fixed from 2017 to 2030. Results indicate that the percentage reduction of carbon
emissions is similar to the percentage reduction of energy.
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Figure 1.1.1.4 National carbon emission reduction (shown as percentages, original unit is Million Metric Tons of Carbon
Equivalent or MMTCe) as a function of ride-hailing demand, BEV market penetration, and charging infrastructure. Green
means a reduction, yellow means relatively no change, and red means an increase. (Carbon emissions include emissions
from upstream and vehicle use)

Figure I.1.1.5 shows carbon emissions at different scenarios of electric grid mix. The scenario “+RH/+
Infrastructure with Renewable Electricity” has the lowest carbon emissions (282.66 MMTCe). In the chart “-
RH” means ride-hailing demand is 0.29%, “+RH” means ride-hailing demand is 100%, “-Infrastructure”
means holding infrastructure coverage at 2017 level, “+ Infrastructure” means infrastructure coverage grows.
The grid mix scenarios are defined as below, according to VISION 2017 model, as shown in Table I.1.1.1.

Table 1.1.1.1 Grid Mix Assumed for Each Scenario.

Coal Petroleum Natural Gas Nuclear Renewables
Reference 23.1% 0.2% 33.7% 17.3% 25.7%
Renewable 26.7% 0.2% 24.6% 17.1% 31.4%
Natural Gas 27.1% 0.2% 36.9% 17.4% 18.4%
Nuclear 26.7% 0.2% 24.6% 30.4% 18.1%
2030 (+RH + Infrastructure) - Nuclear
2030 (+RH - Infrastructure) - Nuclear
2030 (-RH + Infrastructure) - Nuclear B Gasoline
2030 (-RH - Infrastructure) - Nuclear
2030 (+RH + Infrastructure) - Natural Gas M Electricity
2030 (+RH - Infrastructure) - Natural Gas

2030 (-RH + Infrastructure) - Natural Gas Others
2030 (-RH - Infrastructure) - Natural Gas

2030 (+RH + Infrastructure) - Renewable
2030 (+RH - Infrastructure) - Renewable
2030 (-RH + Infrastructure) - Renewable
2030 (-RH - Infrastructure) - Renewable

2030 (+RH + Infrastructure) - Reference
2030 (+RH - Infrastructure) - Reference
)-
) -

2030 (-RH + Infrastructure) - Reference
2030 (-RH - Infrastructure) - Reference
2017
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Carbon emissions (MMTCe)

Figure 1.1.1.5 National carbon emissions at different electric grid mix.
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Conclusions

We quantified national energy impacts of ride-hailing EVs as a function of different levels of charging
infrastructure support and ride-hailing demand. Results show that improved charging infrastructure, faster fleet
turnover rate due to ride-hailing, and high BEV market penetration can significantly reduce national energy
consumption of light-duty vehicles. However, deadheading may compromise the benefits of ride-hailing
vehicles when transitioning from a low ride-hailing-demand market to a high ride-hailing-demand market. To
reduce gasoline consumption, results indicate that it is desirable to have ride-hailing demand of 80% and above
if BEV market penetration is lower than 50% in 2030, or a ride-hailing demand of 50% and above if BEV
market penetration is higher than 50% in 2030.
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Project Introduction

Electrification of Diverse Transportation Modes Prompts New Questions about Charging Infrastructure
Since the introduction of modern electric vehicles (EVs) in 2010, the amount of charging infrastructure
installed in the United States has been steadily growing to meet the changing needs of a small but growing EV
market. [1] By Spring 2019, an estimated 28,122 public charging stations were installed nationwide, according
to the U.S. Department of Energy’s (DOE’s) Alternative Fuels Data Center. [2] In conjunction with the build-
out of charging infrastructure, researchers and policy makers have conducted numerous studies to understand
the charging needs of EV drivers and develop new methods for efficiently planning charging infrastructure.
[3]-[6] The vast majority of this work has been focused on developing charging infrastructure to serve
privately owned, light-duty EVs operated for personal use.

During this same time period, the concept of ride-hailing has risen in popularity. Enabled by information
technology, mobility service companies were created that offer inexpensive, flexible, convenient personal
transportation alternatives to conventional taxi and livery services. Transportation network companies (TNCs)
such as Uber and Lyft have popularized the practice of private vehicle owners providing ride-hailing services
using their own cars. The number of rides offered by TNCs has increased dramatically; the ride-hailing
company Uber took 5 years to deliver its first billion rides but delivered its second billion in the first half of
2016 alone. [7]

In parallel with the rise of ride hailing, the technology (tech) and automotive industries have made significant
investments to develop fully automated, self-driving vehicles. A plethora of established and start-up companies
such as Waymo, Cruise, Zoox, Tesla Motors, Uber, Lyft, and Ford Motor Company are actively developing
and demonstrating self-driving vehicle technology. Automakers, shared mobility service companies, tech
companies, and market analysts are all predicting that automated ride-hailing vehicles will bring about
disruptive market changes. [8],[9]

With the electrification of increasingly diverse transportation modes and vehicles types, there are many
questions about how charging infrastructure should evolve to meet the needs of human-driven and automated
EVs providing ride-hailing. What is the right kind of charging infrastructure for these vehicles? How much is
needed? Where should it be located? After all, benefits of transportation electrification can only be realized if
adequate, cost-effective charging infrastructure is in place to support it.

Between 2016 and 2019, researchers in the AFI Pillar used sophisticated modeling, simulation, and data
analysis tools to address these questions and investigate trade-offs in different charging infrastructure network
designs for human-driven and fully automated ride-hailing EVs. This report documents the findings in the final
year of this research.
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Objectives
Through agent-based simulation, this project quantified trade-offs inherent with different approaches to
charging infrastructure for human-driven and fully automated ride-hailing vehicles.

Approach

Understanding New Market Segments for Transportation Electrification

To understand the charging infrastructure needed to support future mobility, scenarios for analysis and
simulation must be developed that describe what that future market might look like. Although it is not possible
to accurately predict the future, factors that motivate consumer behavior can be examined to develop
reasonable, potential future scenarios. The three SMART Mobility Workflow Common Scenarios discussed in
SMART Mobility Modeling Workflow Report were created in this way to provide common scenarios for all
researchers across the SMART Mobility Laboratory Consortium. To define these scenarios, the consortium set
assumptions for a broad range of behavioral factors, such as traveler preference for personal vehicle use versus
other modes like ride hailing or transit, consumer adoption of different vehicle technologies like automation,
and propensity of consumers to shop online. System-level assumptions consistent with behavioral assumptions
were also defined, such as freight demand and land use, to provide necessary inputs for simulation.

Because the AFI Pillar is focused on EVs and charging infrastructure to a greater degree than other pillars, it
needed to establish additional assumptions. The AFI Pillar performed analysis to add detailed assumptions to
the three Common Scenarios to reflect how ride-hailing vehicles are used. To do this, the Pillar characterized
ride hailing EV owner/operator interests and vehicle use by analyzing survey data from Populus and real-world
driving data shared by RideAustin and Columbus Yellow Cab.

Charging Network Design Trade-offs

After characterizing ride-hailing EV driver interests and motivations, the AFI Pillar developed an approach to
address the question: what are the cost/benefit trade-offs inherent with different approaches to designing
charging infrastructure to serve light-duty human-driven and automated ride-hailing vehicles? To do this, the
AFTI Pillar used multiple modeling tools and analytical methods to design charging networks and simulate their
use by EVs in specific case studies. In these studies, parameters defining charging infrastructure were varied,
such as the number, location, and power level of charging stations, to determine the effect on EV use and cost.

Any public or private entity motivated to install public charging infrastructure enters the planning process with
a finite budget for the number of charging stations, chargers, and plugs that can be supported. To design an
optimized network and achieve the greatest return on investment, it is important to estimate the locations,
number of plugs, and charging speeds that an EV fleet may demand of the future network. This type of
forecasting problem is one that lends itself well to a simulation-oriented approach informed by high-resolution
spatial-temporal data.

The AFI Pillar used two simulation tools, EVI-Pro and FCSPlan to study public charging infrastructure for
ride-hailing vehicles. These tools use a similar approach of simulating charging demand using an
unconstrained network and then clustering the resulting demand for charging in time and space to design a
public network. EVI-Pro relies on real-world travel data to simulate charging behavior for various fleet
electrification scenarios. It uses travel data to identifies locations where EVs will need to be charged to have
enough range to complete their daily driving. All possible charging locations are then spatially aggregated
using a hierarchical clustering algorithm in EVI-Pro to generate a set of discrete charging locations, each with
a limited number of plugs and charging capacity. The AFI Pillar used EVI-Pro to simulate charging
infrastructure to serve human-driven ride-hailing vehicles in case studies in the San Francisco Bay Area in
California.
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Similar to the hierarchical clustering approach used in EVI-Pro, FCSPlan uses K-means clustering to site
charging station locations and numbers of individual charge plugs in simulated networks. The AFI Pillar used
this tool to simulate charging networks for automated electric ride-hailing fleets in the San Francisco Bay Area
in California. Concepts for charger system planning and design were combined with large-scale transportation
system network modeling using BEAM. Figure 1.1.2.1 below shows the general scheme for integrating
FCSPlan with BEAM.

Figure 1.1.2.1 Integration of FCSPlan with BEAM and network simulations

FCSPlan uses a two-stage computational geometry-based heuristic approach. In the first stage, BEAM outputs
are used to identify charging demand from an AEV fleet serving elastic demand. In the second stage, a hybrid
algorithm based on K-means clustering is used to site and size charging stations based on the charging
demands identified by BEAM. K-means clustering is a widely used and understood method for solving this
type of problem. The FCSPlan approach is summarized graphically in Figure 1.1.2.2.

BEAM simulation Record events Infr. planning

e Simulate the driving, » Record when, where, ® | ocate a number of
parking and charging and how many AEV : charging stations to
behaviors of AEVs : charging demands : satisfy all the demands

e Whenever an AEV’s SoC ' happen in the system : * Validate subject to
drops below a specified quality of service
threshold, it gets charged constraints

.........

,
v
-1

Stockton \ ‘i‘ Stockton = Ty "m Stockton

ﬁ‘%‘f

Beam simulation Charging demands Charging station planning

Figure 1.1.2.2 FCSPlan and BEAM integration

EVI-Pro and FCSPlan are designed to optimize charging networks to satisfy all charging demand. These tools
provide useful insights about ideal charging infrastructure design, but they do not take into account practical
constraints on charging station installation, such as real estate scarcity, unwillingness of local land owners to
install charging stations, and adequacy of facilities at desired locations to support charging stations and their
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users. [10] Therefore, the AFI Pillar developed an alternative to the simulation-centric approaches of EVI-Pro
and FCSPIan to envision future charging infrastructure that mimics today’s networks.

A trend-based approach was developed using existing data on real-world public charging networks. Location
data for DC fast chargers (DCFCs) were obtained from the U.S. Department of Energy’s Alternative Fuels
Data Center and manually classified based on location type. Analysis of the two largest DCFC networks
indicated that a majority of present-day DCFCs are hosted in retail spaces. 96% of Electrify America’s DCFCs
are hosted by retail businesses, of which 65% are big box stores (such as Walmart). Figure 1.1.2.3 reveals a
similar finding, in that 87% of EVgo’s DCFCs are hosted by retail stores. DCFC installation in these large
retail spaces is potentially convenient due to the large parking areas and availability of high electric power.

The AFI Pillar used these trends to create a future, hypothetical charging infrastructure network that mimics
today’s network. To do so, the AFI Pillar increased the number of DC fast charger station locations in a
metropolitan area by 50%, siting stations at locations representative of today’s location types. The number of
charging plugs at each location was selected so that the distribution of the number of plugs at new stations
matched the distribution of the number of plugs at today’s stations. This approach was developed to create a
“sparse” charging network, relative to the demand-based, “rich” charging networks generated by EVI-Pro and
FCSPlan.

1% ;3?19’3% 0% 0% 0%

|

= Retail Parking Lots / Garages = Public Municipal
= Hotels = | pisure Destination = Education

= Work Place = Multi-Family = Transportation Hub
= Medical = Other

Figure 1.1.2.3 Hosting venues of EVGo's DCFCs

Results

The AFI Pillar analyzed data provided by Populus, RideAustin, and Columbus Yellow Cab to shed light on
TNC and taxi drivers’ circumstances, motivations, and interests. Insights from data collection and analysis
efforts include the following:

¢ Deadheading represents a significant percentage of present-day TNC operations, accounting for
approximately 50% of vehicle miles traveled (VMT) in both RideAustin and Columbus Yellow Cab
datasets.

e Populus data suggests that vehicles used within TNC fleets are likely more fuel efficient than the average
United States light-duty vehicles, with TNC drivers reporting high shares of sedan body types and
relatively recent model years.

26 Advanced Fueling Infrastructure



FY 2019 Annual Progress Report

o The majority of TNC drivers in RideAustin and Populus data were found to drive part-time with
relatively low VMT. A minority of TNC drivers operate full time (~10%), with high annual VMT
(~30,000, excluding VMT accumulation for personal travel).

o A significant number of drivers appear to be buying new vehicles for TNC use (approximately 50% in
the Populus data).

Most full-time TNC driving days in RideAustin and Columbus Yellow Cab data could be accommodated with
battery electric vehicle with 250 miles of range (BEV250) and overnight charging. Drivers likely become
significantly more reliant on fast charging when residential charging is not an option (approximately 40% of
Populus TNC drivers report living in an apartment).

Real-world Ride-hailing Data Analysis: Populus Transportation Networking Company Driver Survey

The Populus TNC Driver Survey represents a subset of responses from a general population survey, filtered to
only individuals reporting to have recently driven for a TNC. Given a lack of driver demographic data to
describe the present-day population of TNC drivers, it was unclear how to statistically stratify this sample
without target distributions. As such, summaries of raw response data were calculated by household income
levels, without assumed weights for the share of drivers residing in each income bracket.

Figure 1.1.2.4 shows the distribution of TNC driver responses when asked to list the primary reason they are
currently (or have recently) driven for a TNC. Drivers report a plethora of motivations for why they drive for a
TNC, such as being in between jobs or preferring flexible hours. Interestingly, nearly a quarter of drivers
report non-financial reasons as their primary motivation (e.g., keep busy, meet new people). The share of
drivers reporting discretionary motivations generally decreases with decreasing household income.

TNC Driver Share by Motivation and Income
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Figure 1.1.2.4 Populus survey results for TNC driver share by motivation and income
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Figure 1.1.2.5 shows the distribution of TNC drivers by frequency of driving (e.g., a few days a month, a few days a
week, several days a week, daily or almost daily). Consistent with findings from RideAustin data, a minority of
drivers (~10%) report driving for a TNC daily. No meaningful differences by income bin were observed.

TNC Driver Share by Frequency and Income
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Figure 1.1.2.5 Populus survey results for TNC driver share by driving frequency and income

Figure 1.1.2.6 shows the distribution of TNC drivers by residency type (single versus multi-family home and
whether they rent or own their home). Residence type was found to correlate strongly with household income
with the share of drivers renting their home or living in a multi-family unit increasing dramatically as
household income decreases. Given the residential charging challenges typically associated with multi-family
housing, this data suggests the potential for poor access to residential charging for many TNC drivers,
especially those with low income.

TNC Driver Share by Tenancy, Residence Type, and Income
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Figure 1.1.2.6 Populus survey results for TNC driver share by residence type, tenure, and income

Charging Network Design Trade-offs: Charging Infrastructure Planning for Electric Ride-hailing Vehicles in
the San Francisco Bay Area

For future ride hailing EV fleets, the development of a significant amount of DC fast charging is expected to
be needed to supplement overnight charging of the vehicles, be they human driven or automated. These
vehicles in the future may be fully battery powered, some type of plug-in hybrid vehicle with significant
electric range, or hydrogen fuel cell powered. In the relative near term, battery electric vehicles (BEVs) are a
leading candidate due to more competitive “total costs of ownership” and zero-tailpipe emission operation.

There is a complex set of trade-offs to consider regarding the provision of charging infrastructure for these
vehicles, especially in relation to:

e Geographic layout and design (charge plugs per location) and relative density of the charging network
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o Power level of the DC fast charging network (e.g., 50 kW, 150 kW, etc.)
e Battery size and driving range

e Relative size of the ride-hailing fleet in each region.

There also are questions to consider about the degree to which these DC fast charge networks will be dedicated
to the operation of ride-hailing fleets, or potentially shared with privately-owned vehicles. Hence, this project
examines questions around the balancing of vehicle range, fleet size, charge power, and number of stations, as
well as the impact of different charging infrastructure network designs on mobility metrics (e.g., VMT, energy
consumed, downtime, overall fleet economics).

In this effort, the concepts for charger system planning and design are combined with large-scale transportation
system network modeling using BEAM, an agent-based simulation model of the San Francisco Bay area. The
research framework and matrix of analysis scenarios are described below, followed by example results and
interpretation of the scenario simulations.

Framework of Charging System Planning Based on BEAM

The BEAM modeling framework was extended to simulate detailed charging operations for both ride-hailing
and personal-use EVs. Ride-hailing charging behavior is modeled separately for human-driven versus fully
automated vehicles. This analysis is based on the SMART Workflow Scenario “B — Technology Takeover”
where the ride-hailing fleet is a mixture of human-operated and driverless vehicles and traveler preferences are
weighted toward shared modes, including pooled ride hailing.

Three parameters (vehicle range, charger power, and charging network size) were varied across the 24 simulated
scenarios. Table I.1.2.1 lists these primary independent variables and other key assumptions used in this analysis.

Table 1.1.2.1 Primary Independent Variable Parameters and Key Assumptions

Topic Assumptions Value Notes
. 100/200/300 All BEVs in each scenario have
Vehicle range . .
miles uniform range

Vehicle Properties

Market share of EVs Consistent with SMART Mobility

24%

in fleet Common Scenario “B-BAU”
Ride-hailing Fleet Size Total # Vehicles 13,800
Personal Fleet Size # EVs 14,600
Charging Infrastructure OSSP of 50 100 Allohargers in each scenario have
Sparse 50 chargers
Publi Fast Charging Rich 10% 20 Chagers e fdenailing and personal EV
Rich 20% 440 chargers drivers
Rich 100% 2,180 chargers
Sparse 20 chargers
Depot Fast Charging Rich 10% 220 chargers Depot network is used only by fully-
Network Size Rich 20% 430 chargers automated ride-hailing EVs
Rich 100% 2,170 chargers
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The AFI pillar team developed 24 variations around Scenario B, changing the range of the EVs, the power
capacity of the chargers, and the quantity and distribution of the fast charging infrastructure. The fast charging
infrastructure is separated into two distinct networks; the “Public” network is shared between personal-use EV
drivers and ride-hailing EV drivers, while the “Depot” network is used exclusively by the automated electric
vehicles (AEVs) in the ride-hailing fleet.

Table I.1.2.1 lists the parameters varied across the 24 model runs of BEAM along with other key assumptions
used in this analysis. While it is expected that future real-world ride-hailing fleets will feature a mix of EVs
with different driving ranges, modeling distributed ranges is reserved for future work due to the complex
interactions between the charging network and driving range. Similarly, within each scenario, the power level
of each charging plug in the fast charge network is uniform; all chargers are either 50 kW or 100 kW. These
scenarios thus allow for direct comparisons related to EV driving range and charge network power level but
are not argued to be entirely realistic in terms of expected future configurations.
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Figure 1.1.2.7 Spatial distribution of chargers in San Francisco Bay Area by network type. “Depot” chargers are exclusively
available to fully automated, driverless ride-hailing vehicles while “public” chargers are shared between ride-hailing and
personal-use EV drivers.

Two charging infrastructure networks were developed to put reasonable bounds on the investment that might
be required to support a fleet of ride-hailing vehicles. A “Sparse” network was designed using a data-driven
approach based on existing public charging infrastructure in the San Francisco Bay Area. The Sparse scenario
is intended to be an incremental addition of charging infrastructure, adding 50% more fast chargers than are
available today. A “Rich” charging network was designed using two tools for charging infrastructure siting:
the EVI-Pro tool was used to design the public charging infrastructure and the Fast Charging Station Plan
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(FCSPlan) was used to design the depot charging infrastructure. [11] Because the Rich scenario ended up with
substantially more chargers than Sparse, two intermediate infrastructure scenarios were developed that
interpolate between Sparse and Rich. The Rich-10%, and Rich-20% scenarios are the result of adding 10% and
20% (respectively) of the difference in the number of chargers between Rich-100% and Sparse. The spatial
distribution of Rich-10% and Rich-20% were equivalent to Rich-100% (Figure 1.1.2.7). In other words, the
intermediate scenarios have the same number of charging sites, just a proportional number of charging plugs at
each site.

In Figure 1.1.2.8, the numbers of vehicles are shown (left) relevant to operations of the ride-hailing fleet.
Personal-use EVs are included in this figure because these vehicles compete for charging with human-driven
ride-hailing vehicles and their presence therefore impacts fleet operations. Also shown (right) are the number
of DC fast chargers simulated across the four scenarios.

Number of Vehicles in Scenario Number of Fast Chargersin Scenario
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Figure 1.1.2.8 Number of vehicles (left) in all scenarios discussed in this section and number of fast chargers (right) in each
infrastructure scenario

Figure 1.1.2.9 presents the number of individual EV charging sessions that occur in each charging
infrastructure scenario and for each combination of range and charger capacity varied. The y-axis is the
number of charging sessions in the network, including both depot and public chargers. The size of the symbol
represents the relative amount of energy delivered or the intensity of charger utilization, the type of symbol
represents the type of vehicle (personal or ride-hailing EV and human driven or automated), and the color of
the symbol relates to the charge plug power level. The figure shows that 100-mile AEVs must make much
heavier use of the depot charge network, as expected, and that there is much less difference between the 200-
mile EV and 300-mile EV cases. This is because 200-mile EVs are capable of completing much of their daily
travel with charge in their battery at the start the day [12], making the charging demand only modestly higher
than the 300-mile range scenarios. Across all combinations of range and charging power, the Sparse
infrastructure scenario doesn’t enable all charging that would otherwise happen by the AEV fleet. There is a
dramatic jump in the number of charging sessions between Sparse and Rich-10%. From Rich-10% to Rich-
100% there is additional use of the infrastructure, but this growth diminishes with increases in vehicle range.
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Figure 1.1.2.9 Number of charging sessions by infrastructure scenario (x-axis), vehicle range scenario (panel), and charger
power scenario (point color)

Figure 1.1.2.10 presents the passenger miles traveled (PMT) by the EVs in the ride-hail fleet for each
combination of infrastructure, range, and charging power. The 100-kW power level combined with 300-mile
range EVs yields the highest levels of PMT across all infrastructure scenarios. However, when vehicle range is
300 miles and charger power is 100 kW, the benefit of infrastructure on PMT is saturated after the Rich-10%
scenario. Similarly, with 50-kW chargers and 300 miles of range, the benefit is saturated after the Rich-20%
scenario. Across the other scenarios, there is a monotonically increasing relationship between more charging
infrastructure and the passenger miles than can be served by the fleet.

Charging infrastructure provides the greatest relative benefit to fleets with the lowest range, where PMT served
by 100-mile vehicles roughly doubles between the Sparse and the Rich-10% scenarios.

Passenger Miles Served by BEVs in Ride Hail Fleet
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Figure 1.1.2.10 Passenger miles served by EVs in ride-hailing fleet by infrastructure scenario (x-axis), vehicle range scenario
(panel), and charger power scenario (trend color)

32 Advanced Fueling Infrastructure



FY 2019 Annual Progress Report

BEV CAV Ridehail BEV nonCAV Ridehail Other Ridehail

2000 A ‘ 1200 1

1000

0000

8000

800 -
6000 -

Vehicles

600 -

4000 1
400

200 2000

driving-full
driving-reposition
driving-pickup
driving-charge
queuing

charging

idle

offline

Distance per hour (1000 mi)

10 15
Hour of Day

Figure 1.1.2.11 Distribution of the ride-hailing fleet into operating states over the 24-hour simulation period for scenario
with 100-mile range EVs and sparse, 50-kW charging infrastructure. Horizontal panels separate vehicle types and vertical
panels separate time spent by each vehicle (top) and distance traveled by all vehicles (bottom).

The overall operational states of the vehicles in the ride-hailing fleet are shown in Figure 1.1.2.11 and Figure
1.1.2.12 for the sparse and rich infrastructure cases respectively with 100-mile range EVs and 50kW chargers.
For the purpose of this report, the term “connected and automated vehicle (CAV)” refers to a fully automated,
driverless vehicle.

A few features are particularly noteworthy in these plots. First, the time spent and miles driven by vehicles
with passengers (blue region in the plots) are much greater for the automated electric ride-hail vehicles in the
rich infrastructure scenario than in the sparse infrastructure cases. In the sparse infrastructure scenario, there is
a large amount of queuing for the AEVs (purple is in the plots), especially in the middle of the day,
representing pent-up demand for charging to provide more mobility services.

Second, the ride hailing EV fleet with human drivers is much less impacted by the difference between the
sparse and rich infrastructure cases. Because humans drive during a shift (3.5 hours on average), the distance
driven each day allows them to limit charging to 1-2 sessions per day. There is enough capacity in the Sparse
infrastructure scenario to supply this amount of demand without adversely impacting the ability of human
drivers to continue serving customer demand. As can be seen in Figure 1.1.2.9, the number of charging
sessions for human ride-hailing drivers does not increase significantly from Sparse to any Rich scenario,
though the use of fast chargers by personal EV drivers does increase with more infrastructure availability.

Finally, the improved efficacy of the AEV fleet in the rich infrastructure scenario comes at some expense of
driving intensity of the non-EV, “other” ride-hailing fleet. The impact is noticeable but not dramatic because
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the scenarios include mostly (about 75%) conventional vehicles that are only somewhat perturbed by this
effect.
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Figure 1.1.2.12 Distribution of the ride-hailing fleet into operating states over the 24-hour simulation period for scenario
with 100 mile range EVs and Rich, 50kW charging infrastructure. Horizontal panels separate vehicle types and vertical
panels separate time spent by each vehicle (top) and distance traveled by all vehicles (bottom).

Finally, in Figure 1.1.2.13 the cost results of each scenario are summarized. Included in the cost is the vehicle
capital cost for both human-driven and automated EVs, the infrastructure cost for all fast charging (both depot
and public networks) and the electricity required to charge all vehicles in the ride-hailing fleet. All costs are
normalized by the number of passenger-miles served by the EVs in the fleet.

In the Sparse scenarios, the majority of costs are in the vehicles, but in the three Rich scenarios, increases in
total vehicle miles traveled lead to more energy required per passenger mile served (due to extra miles driven
both to charge and associated with deadheading and repositioning). In the Rich-100% scenario, infrastructure
becomes a major component (roughly 1/3) of the total cost.

Overall, the cost results argue that investment in charging infrastructure to go past the Sparse level could be
warranted given the dramatic increases in level of service they enable with modest increases in cost. There are
diminishing returns to passenger-miles served by going from Rich-10% out to Rich-100% (Figure 1.1.2.8) and
the per-mile cost increase in a roughly linear trend. At what point an entity might stop investing in
infrastructure would depend on the priorities and competing opportunities to enhance fleet performance, as
well as the specific combination of vehicle range and charger power that is of interest.
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Cost per Passenger—Mile of Ride Hail Fleet and Public + Depot Charging Infrastructure
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Figure 1.1.2.13 Cost per passenger mile for the EVs in the ride-hailing fleet (both human-driven and AEVs), for both

networks of fast charging infrastructure (both public and depot), and for the electricity and demand chargers necessary to
supply the fleet with energy. The passenger miles traveled are only those that occur in EVs. The range scenarios vary with
the columns of the panels, the power capacity scenarios vary with the rows, and the infrastructure scenarios vary across

the x-axis.

Conclusions

The AFI Pillar used multiple modeling tools and analytical methods to design charging networks and simulate
their use by EVs in specific case studies, in order to examine the cost/benefit trade-offs inherent with different
approaches to charging infrastructure to serve human-driven and automated electric ride-hailing vehicles. In
these studies, parameters defining charging infrastructure were varied, such as the number, location, and power
level of charging stations, to determine the effect on EV use and overall system cost. The simulation results for
the San Francisco Bay Area illustrate the need to include many interdependent factors in order to sufficiently
capture the dynamics of electrified ride-hailing operations. The following are key findings from this research:

An AEV fleet operated without enough charging infrastructure will be severely impaired. Queuing
lengths can become dramatically long, leading to stranded investment in the form of idle AEVs and lost
revenue in the form of missed ride requests.

In a hybrid ride-hailing fleet with both AEVs and human-driven EVs, charging infrastructure can make a
substantial difference in the ability of the overall fleet to serve customer demand, especially for low-
range EVs. For an infrastructure investment of less than $0.01/passenger-mile, 100-mile EVs can double
the number of passenger-miles served.
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To increase the ability of human-driven and AEV ride-hailing fleets to serve more passengers, more DC
fast charging is generally better, but there is a point of diminished returns where additional chargers do
not yield additional PMT. For ride-hailing fleets with 300-mile range vehicles, charger saturation, or the
point where additional public DC fast chargers do not yield additional PMT, can be achieved with
relatively low infrastructure investment. For 300-mile vehicles, saturation occurred at a ratio of one 50-
kW charger for every 3 vehicles and at a rate of one 100-kW charger for every 7 vehicles. Adding more
chargers than these levels does not enhance fleet performance. Lower-range vehicles would require more
infrastructure to achieve saturation.

Caution should be used when considering aggregate charger saturation metrics for human-driven ride-
hailing fleets. Because of variation in human drivers’ shift length, driving behavior, and battery state of
charge at the beginning of each shift, some drivers will need to charge more than others throughout the
day. Even if the amount of available charging infrastructure allows the fleet to satisfy passenger demand,
fares will not be evenly distributed across all drivers. Some drivers may be “stuck” at charging stations
more than others. Therefore, careful attention should be paid to the tail of the distribution of negative
experiences borne by drivers. Conversely, charging infrastructure can be optimized for an AEV ride-
hailing fleet using only aggregate metrics, because individual AEVs can be dispatched (or not) for the
benefit of the fleet.
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Project Introduction

Connected and automated systems are on path to dominate the future of vehicles, buildings, and the power grid
due to the potential for significant improvements in energy efficiency, sustainability, security, congestion
mitigation, and convenience. This transition will include the emergence of connected and automated vehicles
(CAVs) for the transportation of people and goods.

Although some of the areas are partially worked on in the field of CAVs, such as sensors, connectivity, and
communications. However, refueling (charging) methods and the charging infrastructure requirements remain
unaddressed. While having the self-driving and self-parking functionalities, not having self-charging capability
would be a failure for the CAVs. Moreover, a fleet of a CAVs for ride-shared vehicle applications would be a
high cost-intensive investment which requires very high-utilization; therefore, it would not be practical to stop
and charge these vehicles in the middle of the day for several hours. With dynamic wireless charging systems,
these vehicles can be recharged while they are in operation which eliminates the down time for these vehicles.

Not only for the CAVs but in general for all the EVs, range anxiety and the cost of battery packs are among the
most important barriers against future adoption. As one means of increasing the adoption rate of automated
electric vehicles (AEVs), wireless charging can be a one of the fueling methods of charging AEVs due to ease
of charging with no wired connection. Wireless charging is a safe, convenient, flexible, and efficient method
for charging the electric vehicles [1]. Substantial reductions in petroleum consumption and greenhouse gas
emissions are possible with electrified vehicles and roadways. With dynamic wireless charging, AEVs can
self-charge and have ideally unlimited all-electric range and their battery packs can be reduced which would
result in overall weight and cost reduction while improving the fuel economy. According to a study [2], the
market share of plug-in EVs could increase up to 65% among the total light duty vehicle sales if 1% of the
roadways were electrified with 60kW dynamic wireless charging systems.

Furthermore, dynamic wireless charging is a key enabling technology for the connected and automated
vehicles by automating their charging process, increasing their range, wirelessly connecting them to the power
grid, and reducing their battery pack size and weight with improved fuel economy (reduced energy
consumption). The dynamic wireless charging technology is based on the electromagnetic coupling between a
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roadway electrified with coils or long wire loops under the road surface and a receiver coupler mounted
underneath the electric vehicle. Power ratings, track (electrified roadway section) length, electric and
electromagnetic field emissions and confinement, efficiency, lateral misalignment tolerance, power transfer
continuity, geometric layout and design of the tracks, and resonant tuning configurations are the areas with
research needs for the field of dynamic wireless charging systems.

Objectives

This project aims at analyzing vehicle energy consumption levels and accordingly determine the needs of an
optimally designed dynamic wireless charging system to be deployed for refueling the connected and
automated vehicles. The overall project objectives can be summarized as follows:

e Identify vehicle energy consumption levels (including auxiliary energy consumption) for given vehicle
specifications, drive cycles, constant speed operations, and traffic conditions (speed variations).

e Based on the vehicle energy consumption levels, identify the dynamic wireless power transfer (DWPT)
requirements and size and design of the DWPT system specifications for a given route conditions for
AEVs.

e Develop an optimization framework for optimal design of the power rating, track length, and placement
of DWPT systems by minimizing the power rating, and track length while maximizing the range
extension or energy delivery to the vehicles for providing charge sustaining operation.

e Analyze the grid requirements and system impact on the grid.

Approach

DWPT technology is based on the electromagnetic coupling between a roadway electrified with coils or long
wire loops under the road surface and a receiver coupler mounted underneath the EV. Although simple in
concept, DWPT systems are highly complex and are still in the research stage. There is a myriad of design
parameters that must be carefully optimized to achieve a functional, cost-effective design. These parameters
include power rating, the length of electrified roadway sections, referred to as track length, and the distance
between tracks, design of the electromagnetic coils within each track and resonant tuning configurations. The
selection of these and other parameters influence electric and electromagnetic field emissions, charging
efficiency, power transfer continuity, and system cost. The project team explored DWPT designs for EVs and
AEVs to determine the techno-economic feasibility of DWPT for future mobility.

System Description

In a DWPT system, the system components include electrical infrastructure (grid), grid-side power electronics
including the front-end rectifier and the high-frequency power inverter, electromagnetic couplers and the
resonant tuning components, and the vehicle-side power electronics including the rectifier and filter stage, as
shown in Figure 1.1.3.1.
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Figure 1.1.3.1 Block diagram of a typical track-based dynamic wireless power transfer system.
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In this subsection, vehicle energy consumption, finite element analysis (FEA) based modeling for power
transfer characteristics, grid impact and requirements analysis, and the DWPT system optimization are
presented.

Modeling of Vehicle Energy Consumption

Power rating and sizing of DWPT systems depend on the vehicle energy consumption levels because the
DWPT systems must be sized and designed in order to accomplish charge sustaining mode of operation or
considerable range extension. Energy consumptions of vehicles should be evaluated on known duty cycles and
constant speed operations. For the vehicle energy consumption levels, models and databases created by other
national laboratories have been utilized. Point A-to-B constant speed modeling for light-, medium-, and heavy-
duty vehicle classes are analyzed considering the cases with and without auxiliary power. Constant speed
modeling energy consumption models can be especially useful where the automated driving infrastructure can
potentially eliminate the stops. Using the vehicle average power consumption levels and the route distance, the
DWPT system can be sized in terms of the power level of the electrified roadway track and the section length
of it under the assumption of rectangular and continuous power transfer profile to the vehicle. Average power
consumption at constant speeds is based on Eq. (1) with the rolling coefficient 1,=0.0065, equivalent
powertrain efficiency 7.,~85%, and air density p=1.225 kg/m?.

3
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Modeling of Dynamic Wireless Power Transfer Systems

Inductive power transfer is used to transmit power from DWPT transmitters to receivers mounted on the
underside of the AEVs. Due to the airgap between the transmitters and receivers, the inductive links are
loosely coupled and the coupling coefficient, k; = M; / NL,L, is significantly less than 1, where the couplers
in the inductive link are designated by number i where i = 0 designates the roadside DWPT transmitter and

i = 1,2, are the receivers. Multiple AEVs can be powered from the same DWPT transmitter. The equivalent
receiver loads R can be varied to regulate the power flow between the roadside DWPT transmitter and the
vehicle receivers, which can be accomplished by onboard dc/dc converters. Conduction losses are calculated
for the DWPT transmitter and receivers from the parasitic resistances R; = (2/; + 2;) where p is the
equivalent DC resistance of the Litz cable per length. For the DWPT transmitter and receivers, 4/0 Litz wire
cable is assumed with p 0.056 Q/1000. Skin effect losses and bundling effects can be neglected as the cable
is made from braided 38-AWG wire. With an operating frequency of 85 kHz, the strand diameter of 38-AWG
wire will be less than one-half the skin depth, virtually eliminating that component of the alternating current
(AC) resistance [4]. Through the mutual coupling of the inductors M; , each load resistance R is reflected to
the DWPT transmitter. Due to the following distance between the vehicles, the cross coupling between the
receivers q; is assumed to be zero. At resonance, this provides the following relationship for the input
voltage , and current! , .

(wMy)?
Vo = Io(Ry + Ziy @

From this relationship, the transmitter input power P, and the receiver output powers P; are written as a
function of the input voltage V,, the input current I, parasitic resistances R;, and loads of the system.
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Finite Element Analysis-based Modeling of Mutual Inductance and Power Transfer Characteristics

To analyze and validate the power transfer characteristics of long-track based DWPT deployments, the finite
element analysis (FEA) model of a DWPT road section was completed. This FEA model validates the
assumptions in the power transfer profile and continuity along the track. While the smaller lumped coils
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approach has very high peak-efficiency because of the limited coil length, there are power pulsations as the
vehicle passes over one coil to another. Moreover, the energy delivered to the vehicle is limited in this
approach because the energy delivery is a function of the time integration of the power transfer curve. With the
long track approach, the power starts from zero and gradually increases to the peak value as the vehicle starts
getting aligned with the transmit track; then, power transfer stays almost constant along the track, and it
gradually falls as the vehicle clears the track. Because the track is relatively longer, the power transfer stays
almost constant along the track. The FEA model developed validates these power transfer characteristics while
identifying the DWPT track parameters, track to vehicle power transfer efficiency as a function of the track
length, and the mutual inductance variation with respect to the vehicle position. The DWPT track-to-vehicle
mutual inductance has also been modeled, which is an indication of the power transfer profile to the vehicle.
The key findings on the power transfer efficiency with respect to the track length and ferrite thickness and the
parameters for the FEA model are provided in Figure 1.1.3.2 and Figure 1.1.3.3. In addition to the trapezoidal-
shaped mutual inductance and power transfer characteristics, the other important key takeaway is that the
track-to-vehicle efficiency can be 95% for tracks shorter than 100 m with a ferrite thickness of 1/16 in. Longer
tracks require thicker ferrites to maintain similar levels of efficiency.
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Figure 1.1.3.3 Variation of the track-to-vehicle mutual

Figure 1.1.3.2 Efficiency analysis of track-based : ¢ ) /I8
inductance with respect to vehicle position.

DWPT system with respect to the track length.

Grid Impact and Requirements Analysis of DWPT Systems

Project team also evaluated the impact of the DWPT systems on the power system/grid to assess the grid
infrastructure requirements that provides power to the DWPT systems. Additionally, electromagnetic transient
(EMT) studies were performed to quantify the impact of DWPT systems on the grid. These studies are used to
understand the grid infrastructure requirements to reduce the voltage variations in the grid. The reduced
voltage variations can improve the stability of grids and avoid inadvertent protection triggers. For the DWPT
models, the DWPT system requirements were quantified based on the charge-sustaining mode of operation for
the vehicles. The grid impact and grid infrastructure requirements analyses are detailed in [3]. According to the
findings, a DWPT system with conventional grid interface converters would have considerable voltage
fluctuations on the grid side due to the power pulsations. Smart inverters with Volt/VAr supply capability or
integration with energy storage systems and/or renewable energies can be a viable solution to improve the grid
stability and resiliency.

Results

It is thought that the first deployment of the DWPT technology will occur in primary roadways, which
corresponds to the interstates and other freeways and expressways. This is because 10% of all the roadways
correspond to the 60% of all the distances travelled. Because there are more vehicle miles travelled on primary
roadways, it is more likely to see the first deployments on primary roadways. Similar to the HOV lanes, there
will be only one lane electrified with DWPT technology at the beginning. If the transmitter lengths are
designed accordingly, for a given average speed and following distances, it can be assumed that only one
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vehicle can be coupled with one transmitter at a time. Under traffic congestion where more vehicles can exist
on transmitter couplers, the total power from the transmitter should be regulated to the maximum power (i.e.,
vehicles would share the total available power) which would change the findings. Or the DWPT systems could
be designed for the worst-case scenarios with maximum number of vehicles on a transmitter is considered;
however, this option would require significant overdesigning which would not be an optimal solution. Once
the power transfer characteristics are analyzed, the optimal sizing of a dynamic wireless power transfer
(DWPT) system can be analyzed for highway applications. The system parameters must be selected carefully
to reduce the overall cost per mile of DWPT. Among these parameters, system length is important due to its
impact on the system coupling coefficient, overall efficiency, and the cost of construction and installation. The
impact of this effect will increase if the quality factor of the system is low. Because high-efficiency operation
is paramount for DWPT to be practical from both a capital and operational cost standpoint and the quality
factors of systems may be limited, transmitter sizes will be constrained by the dimensions of smaller vehicles.
In this case, it is advantageous to consider utilizing the longer lengths of heavier vehicles to have multiple
paralleled receivers. This will both decrease the initial capital cost and ensure the maximum utilization of the
DWPT system which will drive down the cost of using the system for all. If these costs are low enough,
DWPT could revolutionize future transportation by eliminating range-anxiety and enabling long distance,
charge-sustaining trips in CAVs. This would increase the mobility of both freight and passengers and
ultimately help remove the barrier of long-distance travel from transportation electrification. The analysis
included an interoperable DWPT system that can be used to charge all classes of CAVs including light-duty
vehicles (LDV) and heavy-duty vehicles (HDV). For example, a DWPT system may be designed to have
transmitter lengths shorter than the length of a HDV to maximize efficiency for a LDV. Due to this, it may rely
on having multiple receivers on a HDV to scale the power transfer relative to a LDV. With 42% roadway
coverage, the system could enable charge-sustaining operation for both LDVs and HDVs at 70 mph. For the
system covered here, a multi-objective optimization problem was formulated with an objective function.
Finally, with the inclusion of efficiency and length constraints, Pareto fronts of the solutions were generated by
using a weighing sum method.

As seen from the results in Figure 1.1.3.4, it is important ‘ ‘ " [~ LDV ony

to limit the coverage of DWPT systems due to the large
expense of roadway construction. However, there are | |
practical tradeoffs between the power rating and
coverage of the system. With low coverages, the onboard
energy storage and electronics of EVs must facilitate
high-charge rates. However, the power ratings in this
case may still be lower than what would be required with
high-power static charging because the DWPT system
can transfer energy over a longer period than static
charging systems while the EV is on the move. An upper
limit to the area-related power density can also be
achieved by wireless-charging systems.
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Figure 1.1.3.4 Pareto solutions from the optimization
model for two different cases (LDV only an LDV and
HDV together).

Figure 1.1.3.4 also recommends that around 200-250-kW power rating of the transmitters, 8—12% of the
roadways should be electrified for LDVs only and this is a very reasonable solution that requires not too high
of a power rating and not too high of coverage rates because the power rating would increase the cost of the
power electronics and magnetics and high-coverage rate would increase the construction and installation costs.

As a more long-term but realistic deployment scenario, multiple vehicles on electrified highway lanes can be
considered. This part of the findings involves analyzing the impact of connected and automated vehicles
(CAYV) on the dynamic wireless power transfer (DWPT) system design for future deployment scenarios. In this
case, AEVs can travel in coordinated groups, with each AEV in the group is powered by the same DWPT
section. As the distribution of smaller light-duty vehicles (LDVs) and larger heavy-duty vehicles (HDVs) in
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each group is varied, the DWPT system power level, transmitter length, and the equivalent receiver loads
should be adjusted to minimize the infrastructure requirements and energy losses of the DWPT system. The
outputs from this analysis are used to determine the optimal groupings of vehicles for a given DWPT system.
The analysis suggests that AEV coordination could aid the deployment of DWPT systems and reduce the
overall infrastructure and energy losses of DWPT systems. The methodology involves using the vehicle energy
consumption information, inductive power transfer model, and the optimization formulation. The optimization
formulation uses the variables including the system power level Pgy, the DWPT transmitter length lsys, the
system the system coverage Proad, and the value of the equivalent receiver loads, Ri 1pv and Ry upy. The
optimization is then performed for many possible numbers of light-duty vehicles (LDVs) nipv and heavy-duty
vehicles (HDVs) nupy. This formulation seeks to minimize the infrastructure and energy requirements of the
DWPT system on a per-mile basis. More details on this formulation and optimization results are given in [5].

Conclusions

DWPT can automate the charging process of AEVs and enable them to charge while driving. Analysis of
DWPT to support highway driving found that a DWPT system capable of providing up to 250 kW of charging
power, installed in 8-10% of the primary roadways in the United States, is sufficient to enable continuous,
charge-sustaining operation for light-duty vehicles averaging 65 mph. When including heavy-duty trucks,
DWPT system coverage must increase to 40—45% of primary roadways to support driving at 65 mph. Like in
the transit application, DWPT technology allows EVs to have smaller batteries and use narrower state-of-
charge windows, which reduces cost and increases battery life. Preliminary analysis of DWPT with grid
integration requirements found that DWPT systems will need voltage and reactive power control or will need
to be integrated with energy storage and/or renewable energy systems to dampen transients in power flow from
the grid and prevent grid stability problems.
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Project Introduction

Widespread truck electrification has the potential to significantly reduce petroleum consumption and cost for
the trucking industry. Trucks moving freight account for 25% of all fuel consumed by U.S. transportation, [1]
and fuel accounts for 20% of operation costs for freight companies. [2] Electrification would create many
benefits for reducing overall energy costs but would require a large investment in infrastructure to support
electrification by either public or private parties. This project investigates the foundations of how to approach
this problem and identifies several of the key elements which need to be studied to help support this issue.

The freight industry is complex and there are numerous business models that would require varying degrees of
charging infrastructure and/or changes to their operations to enable electrification, especially with limited-
range vehicles. Although it is true that about 75% of trucks are used primarily for trips of less than 200 miles,
[3] drivers of Class 7/8 trucks often chain trips together, such that their overall distance traveled before
returning to a central location is much longer than the expected range of electric trucks.

The variety and complexity of operations in the freight trucking industry make it challenging to discern where
electric trucks are beneficial, what kind of charging infrastructure is needed for electrification to be feasible,
and who bears the costs and benefits of charging infrastructure investment. Charging infrastructure costs must
be weighed against the cost of operational changes, such as routing and dispatching changes. Electric truck
operations also must be conducted within the confines of regulation, including the maximum allowable time
driver can continuously operate their trucks. The relatively long length of charging time, even with high-power
chargers, may be highly problematic for trucking companies who strive to maximize miles driven within
regulated shift lengths. New tools are needed to help trucking companies manage complex decisions
surrounding electrification and charging infrastructure, which is the focus of this effort.
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Objectives

This project examined several key contributing factors associated with the adoption of electrification of trucks
in the freight industry and how those will impact charging infrastructure design. The objective was to produce
a framework for examining the problem of electric freight charging infrastructure and a report on what the next
steps of research will entail. This will provide decision makers with a path forward to better enable charging
infrastructure decisions.

This project sought to answer the research question: What is needed to understand trade-offs inherent with
different approaches to designing charging infrastructure for Class 7/8 electric trucks for freight transport?

Approach

Truck manufacturers are bringing electric trucks to market based on the need to reduce energy consumption.
Energy efficiency improvements in trucking has far lagged light-duty vehicles, and it is hoped that
electrification can provide a valuable energy efficiency improvement. Electric trucks will need charging
infrastructure to support them. Therefore, the researchers analyzed the freight trucking industry to understand
the characteristics of potential future electric freight truck market segments that charging infrastructure will
need to serve.

The freight trucking and shipping industry is complex and highly segmented, so researchers reviewed data and
reports about the industry to divide it into segments. Data were obtained from publicly available sources, such
as the U.S. Department of Transportation’s Federal Motor Carrier Safety Administration, U.S. Department of

Commerce, and private databases.

The trucking industry was segmented based on operations of different types of trucking companies, also
known as motor carriers. Four factors were considered: cargo ownership, cargo type, shipment size, and typical
operating range. [4] For each of these factors, motor carriers operations were placed within two or three
categories, as shown in Table I.1.4.1.

Table 1.1.4.1. Factors by which to Segment the Freight Trucking Industry

Cargo Ownership Cargo Type Operating Range Shipment Size
For-hire Freight Local Truckload
Private Parcel Specialized Regional Less-than-truckload

Long-haul

For each prevalent industry segment (defined by different combinations of these factors), the researchers
characterized trucking operations, owner/operator interests, and regulations that govern operations. Results of
this analysis were used to define modeling scenarios and assumptions.

A critical consideration for the trucking industry is charging time, because time spent charging directly impacts
a fleet’s financial bottom line and driver pay, which is usually based on miles driven rather than time.

On the vehicle side, truck batteries are expected to be large, in terms of storage capacity, volume, and weight,
in order to provide heavy trucks with up to 500 miles of range. Some estimates put a 500-mile range battery
weighing approximately 11,000 pounds. [5]

Several truck companies have estimated that the average energy use of electric heavy-duty trucks will be
approximately 2 kWh per mile. This value in the analysis. [6],[7]

On the charging infrastructure side, multiple charging technologies are available to freight trucks. The primary
technologies available today include conductive (plug-in) chargers with power levels up to 600 kilowatts (with
faster capacity being studied); static, inductive wireless charging that provided up to 250 kW to the vehicle
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while parked; and catenary technology that provides a direct feed of electricity to trucks along fixed routes,
either while parked or during driving.

Using these figures, simple estimates were calculated for the time required to fully charge an electric Class 7/8
truck with a nearly empty battery. For comparative estimates, Table 1.1.4.2 below shows charging times when
using 150 kW, 250 kW, 350 kW, and 600 kW charging systems to replenish batteries sufficient to provide 150
miles and 500 miles of driving range.

Table 1.1.4.2 Approximate charge times in hours for different types of chargers based on a 2 kWh/mile
usage

Charge Power: 150 kW 250 kW 350 kW 600 kW
150 Mile Range 2.0 1.2 0.85 0.5

500 Mile Range 6.6 4.0 2.85 1.6

The team chose to model a fleet of electric Class 7/8 trucks with 300 and 500 miles of electric range that
charge at 150 and 350 kilowatts as these options are the most developed and should be available in the near
term. Real-world operational data describing the driving and parking behavior of 22 conventional diesel-
powered trucks was obtained from FleetDNA, a database of real-world data that is managed by National
Renewable Energy Laboratory (NREL). [8] Researchers analyzed data from a private, regional-haul motor
carrier fleet based in Dallas, Texas to create spatial-temporal trip segments as inputs to the model. Two
different charging stations location scenarios were then implemented in the model.

Results

Motor Carrier Business Overview

Analysis of 2013 THS registration data shows that there were about 8.5 million medium- and heavy-duty
vehicles registered to around 950,000 unique businesses. [9] The majority of fleets are small (Table 1.1.4.3)
and 86% of motor carriers own five or fewer trucks while 98% own 25 or fewer trucks. However, there are just
more than 300 fleets that own more than 1,000 vehicles each and these fleets account for nearly half of all
registered trucks

Table 1.1.4.3 Distribution of fleets and trucks by fleet size

Number of vehicles <5 525 26—100 101—250 251—1,000 >1,000
Percentage of fleets 86.1% 11.5% 1.96% 0.30% 0.13% 0.03%
Percentage of trucks 16.4% 13.7% 10.0% 5.15% 6.57% 48.2%

Source: Motor Carrier Census Information, Federal Motor Carrier Safety Administration, U.S. Department of Transportation (FHWA 2017).

The size of the fleet may have a significant impact on whether the operation will choose to invest in a capital-
heavy electric charging infrastructure for their trucks or rely on public charging. And because many of the
smaller operators’ contract with others to haul freight, the investment in private infrastructure for many of the
fleets may involve split incentives where those who would benefit most from electrification may not be the
ones with the capital to perform an install. While those who may own facilities may not see a direct return on
investment for purchased equipment.

Similarly, different segments of the motor carrier business will have different opportunities and challenges
when considering an electric vehicle charging infrastructure. For the purposes of this study, motor carriers are
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divided into business segments based on their cargo ownership, cargo type, shipper load size, and typical
operating range. [10] Cargo ownership is divided into two classifications: for-hire and private. Cargo type has
three major divisions: freight, parcel, and specialized. Operating range is divided into three classifications:
local, regional, and long-haul. Shipment size has two classifications: truckload, and less-than-truckload. These
service segments will have significantly different impacts on operations and are described in more detail
below.

Cargo Ownership
Motor carriers can be classified into two groups based on the ownership of cargo:

o For-hire carriers: transport passengers, regulated property, or household goods owned by others for
compensation.

e Private motor carriers: transport their own cargo, usually as a part of a business that produces, uses, sells,
and/or buys the cargo that is being hauled. Cargo ownership can impact where private charging
infrastructure should be installed. Typically, private motor carriers will be delivering materials to their
own facilities which could be used for chargers, while for-hire carriers will make deliveries to facilities
owned by others.

Cargo Type
Cargo type reflects they major type of goods that a motor carrier is moving.

e Freight: Bulk items typically in large containers or portions of containers, or items that can be placed in a
specific trailer for movement. This is the vast majority of all goods movements.

o Parcel Delivery: Transportation of cargo owned by others as individual packages. These packages are
normally smaller items less than 150 pounds and can be combined with many others in a distribution
network.

e Specialized: Specialized cargo requires specific types of vehicles to move freight. This may include
material such as cement or non-trailer supported vehicles. It can also provide movement as part of a
shipping system, such as drayage and transloading. (These normally take place in localized environments
such as ports, container yards, and rail yards.)

The cargo type can impact electrification and charging infrastructure as it influences the operations and types
of vehicles needed to support the business. The movement of typical freight can normally be accomplished
with a tractor pulling a trailer and can be applied to several types of operations. Parcel delivery; however, often
requires a specialized approach to networked sorting and medium-duty vehicles for final distribution. And
specialized cargo may require custom vehicles that operate in limited environments, but which may need a
specialized charging infrastructure.

Operating Range

Motor carriers and vehicles can also be classified based on the primary range of operation. This analysis uses
three classifications: long-haul, regional, and local carriers. Generally, long-haul is more than 500 miles,
regional to be between 50 and 500 miles, and local to have a radius of less than 50 miles.

Figure 1.1.4.1 shows the distribution of trucks and miles by primary trip distance for each truck weight class,
and Figure 1.1.4.2 shows the average annual miles traveled per vehicle. From these figures, several important
insights about the usage of trucks carriers can be discerned, namely:

e Most Class 3-6 trucks are used primarily in local service with trip length of 50 miles or less.
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About half of Class 7-8 trucks are used locally, while 23% are used primarily for trips more than 200
miles.

Within each interval of range of operation, the miles traveled per heavy truck is considerably higher than
miles traveled per lighter truck and the overall average miles traveled by a Class 7-8 truck (45,240) is
more than three times that of a Class 4-6 truck (13,650).

Trucks within Class Miles within Class
by Primary Trip Distance by Primary Trip Distance
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Source: U.S. Department of Commerce, Bureau of the Census, 2002 Vehicle Inventory and Use Survey

Vehicle class is defined as follows:

Class 3: gross vehicle weight rating is 10,001 to 19,500 pounds.
Class 4-6: gross vehicle weight rating is 19,501 to 26,000 pounds.
Class 7-8: gross vehicle weight rating is 26,001 pounds or more.

Figure 1.1.4.1 Distribution of Trucks and Annual Miles within Weight Class by Primary Trip Distance
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Figure 1.1.4.2 Average Annual Miles Traveled per Vehicle by Primary Trip Distance and Vehicle Weight Class
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The operating range has a significant impact on the way that a charging infrastructure may be deployed.
Because the range is typically defined from a centralized depot environment, local and regional operations
have a greater opportunity to utilize private charging infrastructure. These ranges are typically within the
projected range operations of electric trucks that have been announced. Long-haul trucks and operations will
be more heavily dependent on public charging infrastructure.

Shipment Size
For-hire carriers can further be classified into two groups based on the type of service:

e Truckload (TL) carriers contract an entire truck or trailer to move a load for a single shipper with one
origin and destination, typically long-haul service.

o Less-than-truckload (LTL) carriers collect smaller shipments from multiple cargo owners at local pick-
up points, consolidate them onto a truck, and distribute goods through a delivery network. These
networks may consist of both regional distribution routes and long-haul segments.

The operation patterns of TL and LTL carriers are often different from each other. In TL operations, the trucks
often do not operate on fixed routes and schedules, but instead move between various client facilities as
needed. On the other hand, a LTL firm usually operates on set routes between its hub terminals sand between
these terminals and client origins and destinations. Each LTL business may have a uniquely designed network
operation for its specific purposes and these operations can be complicated. Some LTL firms are dedicated to
regional service and drivers may depart from each terminal, deliver and pick up loads, and return to the
terminal. Other firms may also provide a nation-wide long-haul service that involves long-distance transports
that can be in excess of 1,000 miles. [11]

Figure 1.1.4.3 shows the distribution of trucks used and miles traveled by truck weight class for TL and LTL
carriers. Figure I.1.4.4 shows that TL carriers’ operations are characterized by longer hauls and heavier
vehicles, with 63% of miles accounted for by trucks whose primary trip distances are more than 200 miles and
96% of the miles traveled by Class 7-8 trucks. Meanwhile, LTL carriers use Class 4-6 vehicles as often as
Class 7-8, though the smaller vehicles are used for shorter trips such that more than two-thirds of the miles are
accounted for by Class 7-8.

Trucks in Service Type Miles in Service Type
by Weight Class by Weight Class
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Figure 1.1.4.3 Distribution of Trucks and Miles by Truck Weight Class for Truckload and Less-than-truckload Service
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Figure 1.1.4.4 Distribution of Miles by Primary Trip Distance for Truckload and Less-than-truckload Service

The business models reflected in the shipment sizes of for-hire carriers will influence where a private charging
infrastructure could be made available. A hub-and-spoke model with designated routes may have more
opportunity for introducing chargers at key points. Where full-truck load point-to-point operations may depend
more on public infrastructure.

Incentives and Motives

Trucking Regulations

Trucking carriers determine the operation patterns (route, trip length, and driving duration) as well as the type
of trucks based on the business characteristics described above. However, both the operations and the vehicles
are constrained by regulations set by the Federal Motor Carrier Safety Administration of the U.S. Department
of Transportation. These regulations can have a significant impact on how operations are carried out and how
these operations may impact the adoption of electric vehicles and the methods of utilizing a charging
infrastructure.

For example, the type of pay affects the trucker’s driving behavior and his/her needs, which in turn set the
requirements for the vehicle performance and operations. Drivers of heavy trucks and tractor-trailers are
usually paid by how many miles they drive. [12] The survey conducted by the National Institute for
Occupational Safety and Health reported that 65.9% of the respondents were paid by the mile. [13] This means
that many drivers, especially those who operate long-haul transports, have incentive to drive consecutive hours
without stopping. However, drivers’ hours of service are subject to the following regulations: [14]

e 11-Hour Driving Limit: Driver may drive a maximum of 11 hours after 10 consecutive hours off duty.

e 14-Hour Limit: Driver may not drive beyond the 14th consecutive hour after coming on duty, following
10 consecutive hours off duty.

e Rest Breaks: Driver must take a 30-minute break after 8 consecutive hours of driving.

e 60/70-Hour Limit: Driver may not drive after 60/70 hours on duty in 7/8 consecutive days.
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Currently, time used in charging is considered duty hours. This is also true of time spent at a customer’s
loading docks. Adding large amounts of time during a drive cycle for charging would impact the ability of
driver’s ability to drive miles for which they would be paid. It would also impact how business need to meet
their delivery demands and their ability to get to appropriate stopping locations after a drive cycle.

On the vehicle side, federal weight standards are perhaps the most limiting factor in the determination of
payloads and vehicle specification. Federal weight standards apply to commercial vehicle operations on the
Interstate Highway System; however, states may set their own commercial vehicle weight standards and have
different exceptions to federal truck weight limits. In addition to the gross weight, per-axle weight and axle
spacing is specified to reduce the risk of damage to highway bridges by requiring more axles, or a longer
wheelbase to compensate for vehicle weight. Federal standards for commercial vehicle maximum weights on
the interstate highway system are as follows: [15]

¢ Single-Axle Weight: The total weight on one or more axles whose centers are spaced not more than 40
inches apart. The federal single-axle weight limit on the interstate highway system is 20,000 pounds.

o Tandem-Axle Weight: The total weight on two or more consecutive axles whose centers are spaced more
than 40 inches apart but not more than 96 inches apart. The federal tandem-axle weight limit on the
interstate highway system is 34,000 pounds.

e Gross Weight: The maximum weight of a vehicle or vehicle combination and any load thereon on the
interstate highway system is 80,000 pounds.

Batteries to provide a larger range would also require heavier weight that would need to be offset by less
available payload. Some of the weight would be offset by lighter engines, but if the overall impacts lower the
available weight for cargo then it would directly impact the amount of material that the trucking provider can
move and will impact their profit margins.

These regulations and segmentations provide key implications for electrification of trucks and supporting
charging infrastructure. For instance, the miles traveled by a heavy truck is considerably higher than the miles
traveled by a lighter truck. In terms of performance requirements for electric truck and charger, the truckers’
incentive to drive consecutive hours (up to 11 hours) indicates the need for long-range trucks. However,
weight regulations would necessarily create a trade-off between a longer range (heavier battery pack) and a
smaller payload. Each of these trade-offs needs to be considered to create a cost-benefit approach for freight
operators.

Private Infrastructure Motivations

Fleet operators considering electric charging options have complicated choices associated with how to best
integrate charging into their operations. The installation of a private charging infrastructure can allow them to
take advantage of times when their operating profiles may have trucks available for charging versus being in
active use. These infrastructure investment decisions are based heavily on the business segment and regulation
constraints described above. The installation costs, rate costs, and use of private chargers is balanced against
the availability, rates, and route integration capabilities of public charging infrastructure.

The business models for developing a charging infrastructure must consider the charging rate of installed
chargers, the number of chargers to meet the demands of the fleet, and the placement of chargers to best
complement the charging opportunities. The costs of installing charging stations goes up with higher-capacity
chargers and electricity rates may go up if several chargers operating at once impacts peak-rate charges for
facilities. Also, as most private charging chargers would be placed at existing facilities the grid capabilities,
land use considerations, and management of the movement of vehicles through a charging infrastructure all
become key elements of the decision models for a private charging infrastructure.
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In interviews with industry participants, the difficulty to understand, prepare for, and manage the interplay of
these installation choices was a key concern of those considering electrification.

Considering Charging Infrastructure for a Regional-haul Private Motor Carrier in Dallas, Texas

As discussed above, there are many trade-offs to be considered for electrification of heavy-duty trucks.
Decisions around the use of electric trucks and the installation of charging infrastructure are significantly
impacted by different business dynamics and the needs of a specific fleet.

To examine charging infrastructure options to support truck fleet electrification in more depth, researchers
gathered real-world data from a private, freight, regional-haul motor carrier fleet based in Dallas, TX. This
fleet ships freight and palletized goods from a regional distribution center in Dallas to stores and warehouses in
several states in the southern United States, as well as connects to other regional distribution centers as needed.
This fleet offers several types of real-world trips that offer a mix of scenarios — from short haul trips returning
to the distribution center to long-haul trips. The fact that it is private offers several options for installing
chargers at destination locations and a chance to examine the impacts of different solutions.

This data was gathered from 22 trucks operating out of the distribution center over the period of one month.

All the trucks were Class 7 and 8 heavy-duty diesel trucks carrying trailers of goods to be delivered to retail
stores, outlets, and other distribution centers. The recorded data was analyzed, and each stop was identified.
Trips were identified as drives between stops and circuits were identified as a chain of trips which started and
returned to the central distribution center. During each circuit, data loggers recorded the driving duration
between stops, the distance between them, and the time the truck dwelled at each destination. At most
destinations, trucks were parked at the loading docks while goods were unloaded. Trucks were sometimes
parked at other destinations overnight.

Figure 1.1.4.5 shows the circuits for a single truck in the fleet. Each color represents a single circuit driven by
the vehicle; with each dot representing a longer stop on that circuit.
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Figure 1.1.4.5 Circuits driven by a single truck over several days. There is wide variety of circuits.
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The data indicates a wide variety of circuit types over the month, with some circuits performing short trips to
local stops and returning the same day, and others involving multi-day circuits covering hundreds of miles. A
single truck tractor is often assigned to many different types of circuits throughout the month. These
characteristics provide a useful examination of the issues that may face several types of fleet operators.

In this evaluation, the analysis examined several options of infrastructure and vehicle configurations for the
distribution center to electrify its fleet. It looked at how to provide private charging to maximize utility, and
how much public charging would then be needed to support the distribution network if it was used in the same
manner as the diesel fleet based on the current data.

First, because the distribution center activity would be starting at the centralized distribution center depot it
was assumed that the fleet could install chargers at the distribution center to provide power to the trucks while
they were there either loading goods or waiting for their next circuit. This would include installations at any
other distribution centers the trucks may visit. Secondly, because the company owned each of the delivery
locations, it was assumed that it would be an option to install chargers at the loading and unloading docks of
these retail stores so that the trucks could be charging during the unloading of goods.

For the purpose of this examination, it was assumed that the trucks would only stay to charge at each of the
locations for the same amount of time that was recorded in the existing real-world data and not stay longer to
complete a charge. It was further assumed that the chargers would be available during the entire stop at a
location. Each of the charging options at either the distribution centers or stores was chosen to be either a 150-
kW charger or a 350-kW charger, as these are publicly available. And two ranges of vehicles, a 300-mile range
vehicle and a 500-mile vehicle, are considered.

Single Vehicle Impact

To help examine how vehicle availability would be influenced by these options, an individual schedule for one
of the trucks in the dataset was chosen for a case study. For this schedule, the truck made 24 separate trips,
defined by a driving segment between cargo activities. The circuits originated at the regional distribution
center (RDC), performed a set of trips to stores and other distribution centers and terminated at the same RDC.
The trips segments ranged from ranged from 50 miles to over 400 miles. Four of the trip segments exceeded
the 300 miles of range, while none of the trips exceeded the 500 miles of range.

To examine how much charging would be needed to complete a given trip, the analysis looked at the amount
of range that would be remaining when the truck arrived at a destination at the end of the trip. Assuming each
truck started with either the 300- or 500-mile range available, the truck would use that range to reach a
destination. If the remaining range available was negative that meant that the vehicle would have needed to use
public charging to complete the trip. Then, if charging was available at that destination, the amount of charge
they would have received at the given charge rate and truck dwell time (given by the time stopped either for
unloading or at the end of the travel day) was converted to a range and added back to the available range
amount used for the next trip.

The first case considered the scenario where there was only charging available at the RDC depots. This would
mean that the vehicle would only be able to charge from the private infrastructure at the beginning and end of
each circuit (there were 7 circuits in this example set but two of them had stops at other RDC’s).

Figure 1.1.4.6 shows the resulting analysis of available range at each stop. The greatest negative numbers
represent the total amount of public charge that would be needed to complete that circuit.
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Figure 1.1.4.6 Range remaining at each stop for depot only charging

For the shorter circuits, the 150-KW charger and either the 300- or 500-range vehicle was sufficient. But on
the longer circuits, and where the return visit to the depot was relatively short, the need for public charging
increased. At the end of stop 11, the 300-range vehicle with 150-kW chargers would have required 944 miles
of public charging (equivalent to 12.5 hours of charge at the 150-kW rate). The 350 kW and 500-mile vehicles
would have required 527 miles of charging (equivalent to 5.2 hours at the 350 rate). Similarly, at the end of
stop 19, the 300-mile 150-kW scenario needed 1106 miles worth of public charging, while the 500-mile 350-
kW scenario needed 741 miles worth of public charging.

Next, the scenario was considered where the company would install a charger at each of the docks, which
would allow the vehicles to receive charge while they were unloading or loading. It was again assumed that the
time at the dock would not be changed from the current data set (it would include the unloading times as they
were with diesel trucks and included times that they would be parked over-night due to end of day restrictions).
These chargers would increase the range of the truck at every stop they made but may not offset the range lost
in reaching the delivery location. Once again, the remaining range at the end of each trip was recorded, and
negative numbers reflect the need for public charging before reaching those locations. Figure 1.1.4.7 shows the
resulting range available or needed at the trip end for each scenario.

Advanced Fueling Infrastructure 55



Energy Efficient Mobility Systems

Range Remaining at trip end - Charging at all stops

500
400
300
200
100

0

1 2 3 4 5v.—r\\8/9 10 11 12414 15 16 17 18Ngg 20 21 22 23
200 \.!'

-300
-A400

Miles remaining
A
<]

Stop Number

e 150 KW Charge; 300-mile 350 KW charge; 300-mile range

150 kW charge; 500-mile — 350 KW charge; 5004mile range
Figure 1.1.4.7 Range remaining at each stop if charging is available at each stop

In this set of scenarios, only five trips would require public charging of 29, 105, 175, 268, and 149 miles for a
total of 726 miles with the 150-kW chargers and the 300 range. Changing to 350-kW chargers would reduce
the number of trips needing charging to four with a total 537 miles. If the range was increased to 500 miles,
then only 1 trip would need public charging. For 68 miles using a 150-kW charger and 25 miles with a 350-
kW solution.

The single vehicle example reflects that having charging stations at each location greatly improves the range
and applicability of the EV fleet (even with slower charge rates). The solution of even slow charging stations at
each location seems to meet most of the trips for this vehicle.

Full Dataset Vehicle Impact

After evaluating the outcomes of the single vehicle, researchers also examined the applicability of the solutions
to the entire dataset. The dataset for the entire range of 22 trucks included 819 trips total. Only 135 of the trips
were more than 300 miles and 30 of those were more than 500 miles and would be considered true long-haul
trips. In total, 84% of the trips were less than 300 miles.

This analysis applies the same set of options for charging infrastructure and vehicle range to the entire dataset.
Table 1.1.4.4 below lists the number of trips where the charging and vehicle combination would be sufficient to
complete the trip without the need for public charging. Charging only at the RDC resulted in only 23% and
33% of trips being sufficient for the 300-mile vehicles. While with a 500-mile vehicle this was sufficient for
almost half (49% of trips). Adding charging at the delivery locations increased the ability of the charging
infrastructure to support up to 94% of the trips recorded.
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Table 1.1.4.4 Summary of Suitability for Full Vehicle Sample

Vehicle / Charger type # of Trips % of Total
300 Mile / 150 kW RDC only 190 23%
300 Mile / 350 kW RDC only 271 33%
500 Mile / 150 kW RDC only 305 37%
500 Mile / 350 kW RDC only 398 49%
300 Mile / 150 kW all stops 577 70%
300 Mile / 350 kW all stops 650 79%
500 Mile / 150 kW all stops 732 89%
500 Mile / 350 kW all stops 772 94%

Figure 1.1.4.8 and Figure 1.1.4.9 show a breakdown of the number of trips with different amounts of range
remaining at the end of the trip for scenarios with charging at each stop. Trips below bucket 7 would require
public charging. The lower the bucket number, the more charge that would have been needed at public
charging. This evaluation shows that a far majority of the number of trips would be met with the charging
infrastructure, with a small number needing significantly more range than is available. And the difference
between the 150- and 350-kW chargers is not as impactful as the range of the vehicle increases.
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Figure 1.1.4.8 Number of Trips with Given Available Range at Arrival (300-mile range/150 and 350 kwh)
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Figure 1.1.4.9 Number of Trips with Given Available Range at Arrival (500-mile range/150 and 350 kwh)

Discussion of Results

The scenarios modeled in this analysis are a very small portion of the decisions needed and models which
should be applied to assist fleets of vehicle operators. This analysis shows that strategically placing even
lower-cost chargers at key places in the network could readily provide for a large majority of the charging
needs for a regional distribution fleet. And would significantly reduce the dependence on public chargers as
well as charge time during duty cycles.

However, these scenarios utilize some ideal assumptions which need more analysis, such as allowing a charger
at every location and only look at the charger from the viewpoint of a single vehicle. There may be locations
which would be more strategic for placement of chargers that may not require installations at every stop.
Similarly, even though this analysis assumes that a vehicle could use a charger until charged completely, this
may not be the most effective use of the charging infrastructure when considering an entire fleet.

Fleets would wish to consider costs of the installations and rates of electrical charges as well as the types and
number of chargers needed. They would also benefit from the ability to analyze their operational network
depending on their business characteristics to determine which portions of their fleet would be easiest and most
cost-effective to electrify. They would then need tools to help them optimize their routing and operations to
take advantage of these choices.

The results of this analysis indicate the need for further sets of tools and trade-off analysis to help fleet
operators deal with the complex issues of both choosing EVs for their operations and for choosing how to
implement charging infrastructure support for their freight vehicles.

Conclusions

Studying the freight industry revealed that widespread truck electrification has the potential to significantly
reduce petroleum consumption and cost—trucks moving freight account for 25% of all fuel consumed by
United States transportation, and fuel accounts for 20% of operation costs for freight companies. However, the
freight industry is complex and there are numerous business models that would require varying degrees of
charging infrastructure and/or changes to their operations, in order to adopt limited-range electric trucks.
Although it is true that about 75% of trucks are used primarily for trips of less than 200 miles, drivers of Class
7/8 trucks often chain trips together, such that their overall distance traveled before returning home is much
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longer than the expected range of electric trucks. This means that charging infrastructure is needed at
intermediate destinations or along trucking routes, even for short- and regional-haul fleets.

The variety and complexity of operations in the freight trucking industry make it challenging to discern where
electric trucks are beneficial, what kind of charging infrastructure is needed for electrification to be feasible,
and who bears the costs and benefits of charging infrastructure investment. Charging infrastructure costs must
be weighed against the cost of operational changes, such as routing and dispatching changes. Electric truck
operations also must be conducted within the confines of regulation, including the maximum allowable time
driver can continuously operate their trucks. The relatively long length of charging time, even with high-power
chargers, may be highly problematic for trucking companies who strive to maximize miles driven within
regulated shift lengths. New tools are needed to help trucking companies manage complex decisions
surrounding electrification and charging infrastructure.
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Project Introduction

This project is to develop and apply traffic microsimulation tools to predict the impacts that connected and
automated vehicle (CAV) systems are likely to have on traffic and energy consumption. The CAV systems
only exist today in very limited numbers of prototype vehicles with limited capabilities, which makes it
impossible to do realistic field tests that can directly measure traffic or energy consumption impacts.
Consequently, it is necessary to depend on large-scale use of simulations to predict what would happen when
the CAV systems are deployed in large numbers. Producing realistic estimates of the impacts is challenging
because it requires high-fidelity models that are sensitive to the changes in vehicle behaviors that will occur
when they are equipped with CAV technology.

U.S. Environmental Protection Agency (EPA) has shown that transportation accounts for 29% of U.S.
greenhouse gas emissions. As for the state-level emission statistics, the transportation sector accounts for
almost 50 percent of California’s total greenhouse gases, according to the data from the California Air
Resources Board (CARB); while light-duty vehicles, make up 70 percent of the sector’s Green House Gas
(GHG) emissions. Additionally, approximately 80 percent of the smog in California comes from vehicle
emissions. Vehicle fuel consumption and emissions play an important role in the environmental impact and
vehicle manufactures have made significant progress in reducing fuel consumption and emissions by
introducing new powertrain technologies and more efficient vehicle designs. Despite the effort in improving
vehicles, fuel consumption and emissions due to traffic congestion and excessive delay have yet to be resolved.
Nevertheless, we expect that traffic management and control strategies that improve capacity and reduce delay
and travel time would also lead to lower fuel consumption and emissions because there would less stop and go
waves and idling. The goal of this project is to investigate how the Autonomie model can capture the impact of
macroscopic level traffic management and control on fuel consumption and emissions. In this project, we
present a classic example of modern traffic management strategy: freeway ramp metering, which aims to
prevent capacity drop and increase mainline throughput on freeway with merging on-ramps. Minnesota’s
previous study suggested that ramp metering could reduce emissions by 1,161 tons annually (/). The estimated
benefits in this report may not be accurate and realistic because the emissions and fuel consumption
calculations were made based only on average speeds of all vehicles in different time intervals; they did not
consider speed fluctuations and stop-and-go waves of individual vehicles that are observed on real world
freeway facilities. This can be done by analyzing detailed vehicle trajectories, which were not considered in
the above study.
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Objectives
The project objectives include:

o Refining traffic microsimulation models that were developed under previous research projects supported
by the U.S. DOT so that they can represent a wider range of CAV alternatives

e Extending previous traffic microsimulation models from freeway applications to urban signalized arterial
applications, including the vehicle interactions with the traffic signal control systems

o Integrating the traffic microsimulations with post-processing to produce estimates of the energy
consumption derived from the vehicle motion trajectories

e Applying the traffic microsimulations to diverse transportation networks, including rural and urban
freeway environments, high-density and low-density signalized arterial corridors, and environments with
both high and low percentages of truck traffic, so that the differences in energy impacts can be better
understood to support subsequent national impact projections

¢ Producing estimates of the energy that can be saved for different levels of market penetration of
automation systems operating at different levels of automation, both with and without connectivity, in
specific scenarios that can be extrapolated to represent national impacts.

e Examining how the Autonomie model can capture the impact of freeway traffic management and control
on fuel consumption and vehicle emissions at merge bottlenecks using detailed vehicle trajectory data
that precisely captures the speed fluctuations and stop-and-go waves that are associated with capacity
drop at freeway merge bottlenecks. The study will choose ramp metering as a typical control measure,
and will be conducted through microscopic simulation, as field experiments may be extremely costly and
impractical.

Approach

Our modeling framework includes the microscopic traffic models that depict the interactions among
ACC/CACC vehicles and manually driven vehicles, as well as the overall impacts of the CACC string
operation on the traffic flow. The traffic models provided a solid foundation for modeling the car following
and lane changing behavior in mixed traffic with the CACC operation strategies. The traffic models also
depicted the effects of traffic control and management strategies including the CACC vehicle dedicated lane in
freeways, vehicle-to-vehicle (V2V) communications between CACC vehicles and manually driven vehicles,
and cooperative traffic signal control algorithm. The fuel consumption model computed the vehicle fuel
consumption rates based on the second-by-second vehicle speed and acceleration data generated by the traffic
models.

4. Human Driver Mode/

The human driver model is used to update the position and speed of the manually driven vehicles in the
simulation. Particularly, the car following behavior is depicted by Newell’s simplified car-following model [1]
with constraints for safety and free-flow accelerations. The safety acceleration is derived from the safe distance
term in Gipps’ car-following model [2]. It specifies a subject vehicle’s maximum allowable acceleration under
the collision avoidance constraint. The free-flow acceleration is derived from the free-flow component of the
Intelligent Driver Model [3], which provides the upper limit of the acceleration when a vehicle accelerates in
light traffic. The acceleration of a subject vehicle at each simulation interval is determined as follows:

a=min (aNlafree'asafe) (1)
Where ag: free-flow acceleration; ay: Newell acceleration; agqf.: safe acceleration.

The acceleration terms in Equation 1 are given as follows:

Connected and Automated Vehicles 61



Energy Efficient Mobility Systems

ay(®= ((d(D)-djam) /TH-v(D)/ (tn/2) ()
Afree (D =amax[1-(V(D) / Viree) ] (3)

Asafe ()= (Vsafe (t+T0)-v(D) /T, 4)

Veate (t+T)=A) +V A()2-C(t) (5)
A(t)=-b¢t, (6)

C(O=b2( d(0)-dya) V(DT (/)] @

where Ty,: desired headway [s]; v(t): speed of the subject vehicle [m/s]; dj,m: jam gap [m]; ap,,: maximum
acceleration [m/s?]; Vgee: free flow speed [m/s]; a: acceleration exponent; T,: reaction time [s]; v(t + 7,)

: speed of the subject vehicle after reaction time [m/s]; v;(t): speed of the preceding vehicle [m/s]; by: most
severe braking that the subject driver wishes to undertake [m/s*]; b: the subject driver’s estimate of preceding
vehicle’s most severe braking capabilities [m/s?]; d(t): clearance gap with regard to the leader at time ¢t [m].

When a subject driver is making a lane changing maneuver or just completes a lane changing maneuver, the
driver will temporarily accept shorter desired time gap and jam gap and her/his reaction will be faster for
achieving a safe lane changing operation. Similarly, if the subject driver actively creates a gap for a lane
changer or receives a lane changer that just merges in front, the driver’s car following behavior also
temporarily changes. To depict the above car following states, the driver’s desired headway, jam gap, and
reaction time used in Equations 2 to 7 for the regular car following state will temporarily decrease when a
subject driver adopts those modes. Afterwards, the parameters will linearly increase until they return to the
normal values.

2. ACC and CACC Models

The CC, ACC and CACC vehicle following models were reported before, which were calibrated and validated
with field test data of a few CACC vehicles driving in those modes in public traffic. Those data should capture
the dynamic interaction between CC/ACC/CACC vehicles with manually drive vehicles.

3. Cooperative Traffic Signal Control Algorithm

The testbed, we have used a cooperative signal control algorithm that adopts the CACC datasets and the
datasets collected by the traditional fixed traffic sensors to predict the future traffic conditions. The prediction
allows the signal controller to assign signal priority to the intersection approach that accommodates the most
CACC strings. Such a control strategy can significantly enhance the CACC string operation, which ultimately
improves the overall intersection performance. The structure of the signal control algorithm is briefly
introduced as follows. The detailed algorithm description can be found in [5].

The objective of the proposed cooperative signal control algorithm is to determine proper green times for the
eight-phase signal controller such that the resulting signal phase and timing (SPaT) scheme maximizes the
overall throughput of the intersection. This would indirectly improve the vehicle energy consumption
performance. It improves the intersection operation by assigning green time more efficiently than the fixed or
actuated signal control. Figure I.2.1.1 shows a conceptual comparison between the cooperative algorithm and a
typical actuated control algorithm. With the actuated controller, vehicle A from the westbound approach would
trigger green time extensions. The extended green time only allows a few vehicles in the dashed box to pass
the intersection. On the other hand, our algorithm reallocates the green time such that the extended green time
is given to a different approach where several CACC strings are coming. The resulting green time split allows
vehicles in those CACC strings to pass the intersection without waiting for another green cycle, thus leading to
improved intersection throughput.
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Figure 1.2.1.1 Comparison of the proposed algorithm and actuated control

4. Fuel and Emission Evaluation Using Autonomie

Fuel Consumption and Emissions Modeling

Many researchers have studied fuel consumption and emission models [11],[12]. Typically, modal emissions
models, such as MOVES model, use the concept of operating bins to calculate the emission rate [13]. They use
the vehicle trajectory data generated from the simulation to calculate the fraction of time each vehicle spends
in different operating bins, which are categorized by speed, acceleration, and scaled tractive power (STP).
Then, the average emission rate for a vehicle could be calculated using its operation mode distribution with the
emission rates table. However, we would prefer to use second-by-second detailed trajectory data to precisely
model the effect of speed fluctuations and stop-and-go waves (all of which are associated with capacity drop)
on fuel consumption and emissions. Unfortunately, many previous studies [12],[14],[15] raised the concern
regarding the intense computation burden associated with analyzing second-by-second vehicle trajectory data.
As a compromise, these models use operating bins to divide each vehicle’s travel time into various groups
based on its speed and acceleration data (or other attributes) at that time, where each group has its own
emission rate. But no matter how precisely these modes are divided, we cannot precisely capture the effect of
speed fluctuation and stop-and-go waves.

Autonomie for Energy Evaluation

Autonomie, developed by Argonne National Laboratory (Argonne) in collaboration with General Motors, is a
MATLAB-based software environment and framework for automotive control system design, simulation, and
analysis [11]. In Autonomie, it simulates each vehicle’s fuel consumption and emissions based on details such
as engine speed and gear position at every timestamp, using on second-by-second trajectory data generated by
microscopic simulation. This allows the model to capture speed fluctuation (i.e., acceleration, deceleration, and
idling) and stop-and-go waves. Contrary to our expectation, Autonomie uses parallel computing methods to
achieve high computational efficiency. By building models automatically, Autonomie allows the quick
simulation of a very large number of component technologies and powertrain configurations. The model has
been validated for several powertrain configurations and vehicle classes using Argonne’s Advanced
Powertrain Research Facility (APRF) vehicle test data [17],[19]. This enables us to precisely model realistic
fuel consumption and emissions. In this study, the simulation experiments only included conventional gasoline
powered vehicles as alternative powertrains still represent a very small market penetration.

The steps of Autonomie’s energy evaluation are shown below:
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Step 1: Export the trajectory SQLite files generated in Aimsun to .csv files to run (using 10% trajectory data
for energy evaluation can maintain reasonable accuracy while significantly reduce computation time);

Step 2: Setup parameters, which includes: AimSun trajectory filename, Scenario file: ANL provided xml file
defining the scenarios and vehicle mapping, Vehicle class: ‘LD’ for light-duty and ‘HD’ for medium-
duty/heavy-duty, and Output results filename: Energy results database filename (.csv);

Step 3: Obtain the results database: the results is in .csv format, each row corresponds to the results of a single
trip in the trajectory database, and the information (columns) includes Vehicle ID / Vehicle filename, Fuel
consumption (kg), Fuel consumption per mile (kg/mile), Electrical consumption (J), Driving distance (miles),
Fuel economy (mpg), Emissions — GHGs, VOC, CO, PM10, PM2p5, NOx, SOx, BC, POC, CH4, N20
(kg/km), and Vehicle manufacturing cost (2015$).

Table 1.2.1.1 Screenshot of Autonomie Output Results
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Microscopic Simulation of Freeway Merge

This study used the PATH model [2] to simulate realistic car following and lane changing behavior that lead to
capacity drop at freeway merge bottlenecks Figure 1.2.1.2. The PATH model has been proven, calibrated and
validated, and discussed in detail in several studies [20],[23]. The PATH model is also more effective than the
proprietary driver behavior models in commercial microscopic simulation software packages, as the
proprietary models cannot replicate capacity drop [24]. The PATH model was incorporated into a commercial
microscopic simulation package AIMSUN [25] using micro software development kit (MicroSDK). As shown
in Figure 1.2.1.2, a simple freeway merge was first built in the AIMSUN microscopic simulation software [25].
The merge section consists of a freeway mainline with 4 lanes, an on-ramp, and a 155-meter acceleration lane.

Mainline

155 m
On-ramp Acceleration Lane

Figure 1.2.1.2 Multilane freeway merge section

In the freeway merge simulation experiments, we first determined the capacity of the freeway mainline (zero
on-ramp demand) by measuring the maximum 15-minute moving average flow downstream of the merging
area (at the location indicated by the camera and the dotted line in Figure 1.2.1.2. This was done according to
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the definition specified in the Highway Capacity Manual [26]. This first experiment simulated a constant and
relatively low traffic demand for one hour, and if the freeway remained free-flowing, then we conducted
subsequent simulations using slightly higher demand input (e.g., plus 1000 veh/hr), until we can observe
congested conditions and the capacity (defined as the highest observed 15-minute moving average flow) no
longer increased as the input became larger. Afterwards, these procedures were repeated with identical freeway
mainline demand and an additional on-ramp demand of 300 veh/hr, 600 veh/hr, 900 veh/hr, 1200 veh/hr, and
1500 veh/hr to determine whether the capacity previously observed would decrease following the introduction
of merging traffic. We expect that the capacity of this merge section would decrease as on-ramp demand
became sufficiently high (for example at 600 veh/hr). Finally, we activated the ramp metering at a metering
rate equal to the maximum on-ramp demand at which the capacity of the freeway merge did not diminish. All
the above simulations were conducted for 10 replications with different random seeds. Lastly, each simulation
run would generate a SQLite database with detailed vehicle trajectory including vehicle speed, acceleration,
timestamp, and position (x-y coordinates). The database will be used as input for the fuel consumption and
emissions analysis using a model known as Autonomie.

After the simple freeway merge experiments, a microscopic simulation network of the SR99 northbound
corridor (Figure 1.2.1.3) was then built using the most up to date road geometry, lane configurations, speed
limits, and S-minute interval loop detector data from the Performance Measurement System(PeMS). PeMS is
an integrated CA state-wide highway data system; all the highway data from 12 Districts are

forwarded to the system every 30 s in real-time for traffic monitoring and management. The PeMS data
were used as the inputs in demand at the most upstream location of the simulation network and the entry points
of the on-ramps, and as the turning percentages at any applicable mainline off-ramp split. The simulation
lasted for 6 hours from 5:00 AM to 11:00 AM in a typical day, and this 6-hour period encompasses periods
prior to, during, and after the typical morning peak. Ramp metering rates were obtained from the look-up table
provided by Caltrans District 3 and the local responsive algorithm was modeled in the microscopic simulation
via the AIMSUN API (Application Programming Interface).
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Figure 1.2.1.3 Land configuration and road geometry

Results

1. Impacts of CACC on a Freeway On-Ramp Bofttleneck

The case studies were performed in a typical freeway on-ramp merging area displayed in Figure 1.2.1.3. The
red boxes indicate the source links, through which the simulated vehicles are released into the network. There
is a 2-kilometer ‘warm-up’ mainline segment immediately downstream from the mainline source link,
followed by a 1-kilometer homogeneous freeway segment before the merging link. The simulated vehicles use
the warm-up segment to reach a stable car-following state after entering the network. This segment also allows
CACC vehicles to form stable CACC vehicle strings in the CACC analysis cases. The traffic data collected
downstream from the warm-up section was used for the analysis. The vehicle fuel consumption was computed
based on the vehicle speed and acceleration data by using the Virginia Tech Comprehensive Power-based Fuel
Consumption Model [6].

The freeway upstream mainline input was 1950 veh/hr/lane, which was the pipeline capacity when all vehicles
were manually driven. The on-ramp input was 600 veh/hr. This on-ramp demand was sufficient to trigger
traffic congestion when the mainline input approaches the capacity. The CACC and ACC market penetrations
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considered in the analysis ranged from 20% to 100%, in 20% increments. When the ACC/CACC market
penetration is less than 100%, the ACC and CACC vehicles were randomly generated at the beginning of the
simulated network based on the ACC/CACC market penetration. The same ACC/CACC market penetration
was used for both the freeway mainline input and the on-ramp input. Each scenario has simulated 5
replications with each for one hour. In addition to the effect of CACC market penetration, we also considered
the impact of the CACC string operation strategies on the vehicle fuel efficiency under low or medium CACC
market penetrations. The strategies tested in this study were the CACC vehicle with managed lane (ML) and
the implementation of vehicle awareness devices (VAD) on the non-CACC vehicles. A VAD vehicle is a
manually driven vehicle equipped with a wireless communication device that broadcasts the vehicle’s real-time
operation information (e.g., speed, acceleration, and yaw rate). Its car following and lane changing behavior is
the same as the normal manually driven vehicles. When a CACC vehicle is following the VAD vehicle, the
CACC controller can receive the preceding VAD vehicle’s data and perform the automated speed control as if
it is following a CACC vehicle string leader.

11 Fuel Consumption Rates of ACC and CACC Cases

Figure 1.2.1.4 depicts the comparison of the fuel consumption rates among various CACC and ACC market
penetrations. The fuel consumption decreases with the CACC market penetration. Such a trend is associated
with the increase of CACC vehicle strings in the traffic stream. As more CACC vehicles operate in the strings,
they adopt shorter time gaps, thereby occupying less freeway space. As a result, many long gaps are created
between CACC strings. The on-ramp vehicles can easily merge into those gaps without forcing the mainline
traffic to slow down. It therefore leads to a smoother traffic stream with more efficient vehicle fuel economy.
In addition, the left part of Figure 1.2.1.4a shows that all CACC cases perform substantially better than the
human driver case when there is no on-ramp traffic. It implies that a small portion of CACC vehicles can
already stabilize the traffic flow in the homogeneous freeway segment and bring about energy savings.
However, when there are traffic disturbances from the on-ramp, the low CACC market penetration cases
become worse than the human driver case. When the population of CACC vehicles is small, most of them must
adopt the ACC controller because they cannot find a CACC vehicle leader. The ACC controller can intensify
the disturbances caused by the on-ramp traffic, leading to more severe traffic oscillations and worse fuel
economy.
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(b) ACC cases

1. 6E-04 ‘ Mainline and ramp traffic J
g 1.5E-04 —
o Mainline
= LAE-04 1 (affic only
= 1.3E-04
S
E‘ 1.2E-04
g 1.0E-04 N -4~A\vl\/-"“v"'~ meas
S 9.0E-05 VATt
g I:so o eSY
= 8.0E-05

800 1200 1600 2000 2400 2800
Time (s)
0% === 20% = = 40% 60% == -80% =—===100%

Figure 1.2.1.4 Time series of fuel consumption rate under various CACC and ACC market

12 Fuel Consumption Rates under the Influence of CACC String Operation Strategies

The CACC operation cannot bring about substantial capacity improvement while maintaining the same vehicle
fuel economy until the market penetration reaches a higher level. This might hinder the initial deployment of
the vehicle automation system in the existing highway system. Previous studies showed that the
implementation of specific CACC operation strategies can improve the effectiveness of CACC under the lower
market penetration cases [7]. Those strategies might also improve the vehicle fuel efficiency. For this reason,
we further analyzed the influence of the operation strategies (i.e., ML and VAD) on the vehicle fuel
consumption rate under low and medium CACC market penetrations.

Figure 1.2.1.5 shows the temporal and spatial patterns of the vehicle fuel consumption rate for the 40% CACC
case when the upstream mainline input is fixed at 1950 veh/hr/lane (i.e., the capacity of the human driver only
case) and the on-ramp traffic is 600 veh/hr (Similar observations are found for the 20% and 60% CACC cases).
The results prove that the vehicle fuel efficiency can be significantly improved when the application of the
ACC controller (without V2V cooperation) is reduced. The VAD strategy performs better than the ML strategy
because the former can completely remove the impact of the ACC car following behavior, whereas the latter
only eliminates the ACC usage in the managed lane.

Another interesting observation is that the vehicle fuel consumption rate of the 40% ML case is higher than
the 40% case when there is no on-ramp input. There are two contributing factors to this observation. One cause
is that the ML strategy induces additional vehicle lane changes between the managed lane and general-purpose
lane, which trigger local traffic disturbances. Another reason is that the managed lane only serves 25% of the
total traffic or 62.5% of the total CACC traffic. The remaining 37.5% of the CACC vehicles are scattered in
the general-purpose lanes. Since the CACC market penetration in the general-purpose lanes is low, there is a
large probability that those CACC vehicles still use the ACC controller in the traffic stream.
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Figure 1.2.1.5 Temporal and spatial patterns of the vehicle fuel consumption rate for the 40%
CACC case

5., Signal Operation of Intersection with CAVs

We tested the performance of the cooperative signal control algorithm in a simulation environment. The
simulation experiments offer a performance comparison for a four-way signalized intersection with and
without the cooperative signal control algorithm. The test intersection is a four-way intersection as illustrated
by Figure 1.2.1.6. The southbound and northbound approaches are major approaches with two through lanes
and a dedicated left turn lane. The westbound and eastbound approaches are minor approaches with one
through and right turn lane and one left turn lane. The major approach has a traffic demand of 95% through
movement and 5% left turn movement. The traffic volume of the minor approach contains 45% left turn
demand, 45% right turn demand, and 10% through demand. The baseline simulation has been performed under
0% CACC case. The baseline signal adopts a typical actuated signal controller. The parameters of the
controller, including the green, yellow and all red time, are shown in Figure 1.2.1.6. Those parameters are
determined based on the method described in the Highway Capacity Manual [8]. In addition to the baseline
simulation, we also conducted analyses for scenarios of 20%, 40%, 60%, 80% and 100% CACC market
penetrations. We had 5 simulation runs for each scenario. Each run covered 10 minutes warm-up period and 1-
hour simulation time.
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Figure 1.2.1.6 Simulated intersection and signal control parameters

2.1 Impacts of CACC on Intersection Capacity

We first investigate the impacts of CACC on the intersection capacity when the default actuated signal
controller is used. The intersection capacity with various CACC market penetrations is shown in Figure 1.2.1.7.
We observe a 67% capacity increase for the major approach (i.e., the northbound and southbound approach),
and a 49% increase for the minor approach (i.e., the eastbound and westbound approach) when the CACC
market penetration is 100%. The capacity of the major approach is substantially larger than the minor approach
because the major approach has more lanes and it is assigned longer maximum green time (see Figure 1.2.1.6).
For the major approach, the capacity first increases quadratically as the market penetration changes from 0% to
40%. Afterwards, the increase follows a linear trend. The rate of increase becomes smaller because of the
influence of the lane changing behaviors occurred near the intersection stop bar. When a subject vehicle needs
to make a left turn at the intersection, it must make mandatory lane changes towards the left turn lane. In
higher CACC market penetration cases where the CACC string operation may prevent the subject vehicle from
finding a sufficient gap upstream from the intersection, the lane changing vehicle is often forced to make
aggressive last-minute lane changes near the intersection. This would greatly interrupt the queue discharging
flow of the CACC strings. As a result, the capacity benefit that could have been provided by the CACC string
operation is substantially decreased.
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Figure 1.2.1.7 Intersection capacity per direction with CACC market penetration

22 Impacts of the Signal Control Algorithm with CACC Market Penetration

We aim to determine the impacts of the proposed signal control algorithm under various CACC market
penetrations. In the simulation runs, the traffic demand input for the major approach was 1800 vehicles per
hour and the demand for the minor approach was 350 vehicles per hour. Those inputs were the intersection
capacity measured in the 0% CACC case (see Figure 1.2.1.8). The average vehicle speed and average vehicle
miles travelled per gallon fuel consumed (MPG) were used to depict the effects of the algorithm on both the
traffic flow and vehicle fuel consumption.

The vehicle speed and MPG variations with respect to CACC market penetration are shown in Figure 1.2.1.8
and Figure 1.2.1.9. The results show that the proposed cooperative signal control algorithm can assign the
green time more efficiently than the default actuated controller. Consequently, the queued vehicles can be
released from the intersection within a control cycle even in cases with 20% or lower CACC vehicles. For this
reason, the algorithm brings about great performance improvement in the 0% and 20% CACC cases. Notably,
the algorithm performs well in the 0% CACC case where the SPaT computation completely relies on the
vehicle count and speed data obtained via the fixed traffic sensors. With such limited datasets, the algorithm
can still generate green time distributions that substantially improve the speed and MPG. This demonstrates the
robustness of the proposed algorithm.
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Figure 1.2.1.8 Average vehicle speed under various CACC market penetrations
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Figure 1.2.1.9 Average vehicle fuel economy (MPG) under various CACC market penetrations

2.3 Implementation of the Signal Control Algorithm with Vehicle Trajectory Planning

We have implemented the proposed signal control algorithm with an optimal vehicle trajectory planning
strategy presented in [9]. The energy saving due to the implementation of the trajectory planning becomes
much less significant. Table 1.2.1.2 shows the average vehicle MPG when the CACC market penetration is
100% and the traffic demand is 10% and 100% of the intersection capacity measured in the manual driver case.
It shows that the vehicle fuel efficiency only has a minor increase when the demand is 10% of the intersection
capacity. The fuel economy even becomes worse when the demand is 100% of capacity. As the trajectory
planning algorithm asks the subject vehicle to start decelerating earlier than it does in the baseline case, it also
causes the following vehicles to join the queue initiated by the leader at an earlier time. Because of the early
start of the queue accumulation, more vehicles upstream from the subject vehicle will be affected by the queue.
Many of the queued vehicles would have passed the intersection without slowing down if the trajectory
planning is not implemented. In this case, the benefit of the trajectory planning for individual subject vehicles
is largely offset by the energy loss of the extra queued vehicles. Such an energy loss trend becomes greater as
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the traffic demand increases. This analysis indicates that we need to improve the trajectory planning algorithm
such that it optimizes both the fuel consumption of the subject vehicle, and the overall traffic flow.

Table 1.2.1.2 Average Vehicle MPG under Traffic Inputs of 10% and 100% Intersection Capacity

10 % Capacity 100% capacity
Baseline T;fgﬁﬁ:ﬁg A Baseline T;fgﬁﬁ:ﬁg A
Overall 314 31.5 0.1% 29.4 29.2 -0.8%
NB 321 321 0.0% 30.1 29.8 -0.9%
SB 32.0 32.1 0.3% 29.8 29.5 -0.8%
WB 20.6 20.5 -0.6% 19.9 19.7 -1.3%
EB 18.5 18.3 -1.3% 20.8 20.7 -0.4%

The analysis has shown that capacity drop at the freeway merge can be replicated in simulation, and metering
the on-ramp can mitigate capacity drop and improve mobility at the freeway merge. Capacity drop at the
freeway merge has a negative environmental impact while metering the on-ramp properly can mitigate the
negative environmental impact, which can be all captured by Autonomie model. Finally, the effectiveness of
traffic management can influence fuel consumption and emissions: effective strategies such as ramp metering
that prevents capacity drop can reduce emissions but inefficient strategies such as the local responsive ramp
metering (LRRM) implemented on SR-99 corridor can do the opposite to fuel consumption and emissions.

6. Fuel Consumption and Emissions on Simple Freeway Merge

Fuel consumption and various types of emissions were calculated via Autonomie. For emissions, empirical
studies indicate that NOx, CO, HC and CO?2 are four most important performance metrics for quantifying the
environmental impacts in the transportation sector [10],[12],[19]. In addition, PM 2.5 was selected because it is
closely linked to deaths from heart and lung diseases [27]. We measured the average fuel consumption and
emissions metrics on a per-kilometer and per-vehicle basis in order to account for the fact that different
scenarios have different number of vehicles simulated (due to varying on-ramp demand) and that vehicles
travel varying distances.

As shown in Figure 1.2.1.10, the solid lines represent the fuel consumption or emissions estimates of the
freeway merge (mainline and on-ramp combined), while the dotted lines represent the fuel consumption and
emissions estimates at on-ramp only. Prior to implementing ramp metering, the average fuel consumption and
emissions increases at a constant rate as the on-ramp demand increases from 300 veh/hr to 900 veh/hr,
afterwards, the average fuel consumption and emissions still increase but at a slightly lower rate. This indicates
that there is a correlation between the previously observed capacity drop and average fuel consumption and
emissions; capacity drop due to high on-ramp demand can lead to as much as a 57% additional fuel
consumption and emissions per kilometer for each vehicle (compared with the case where the on-ramp demand
is absent).
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Figure 1.2.1.10 Emission and fuel consumption estimates at varying levels of on-ramp demand

Also shown in Figure 1.2.1.10, once the on-ramp had been metered at a fixed rate of 400 veh/hr for on-ramp
demands of 600 veh/hr or higher, the average fuel consumption and emissions are no longer as high as those
observed without ramp metering. This improvement in average fuel consumption and emissions can be as high
as 20% at high on-ramp demands (1200 veh/hr to 1500 veh/hr). This can be attributed to the higher overall
freeway merge capacity leading to lower delay and less travel time. In addition, careful inspection of Figure
1.2.1.10 reveals an interesting finding: metering the on-ramp when the on-ramp demand is 600 veh/hr or higher
restricted the on-ramp flow and caused the average fuel consumption and emissions to increase significantly,
and this is also correlated to the significant increase in the stop time and total number of stops on the on-ramp
shown in Table 1.2.1.3. However, despite that ramp metering increased the number of stops and stop time on
the on-ramp, it shows that the higher freeway merge capacity led to fewer stops and less stop time on the
mainline, which contributed to overall reduction in average fuel consumption and emissions. This phenomenon
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is very similar to the observation that ramp metering improves the overall capacity of the freeway merge at the
expense of restricting the flow and increasing the delay of the on-ramp.

Table 1.2.1.3 Comparison of Stop Time and Number of Stops on Mainline vs On-Ramp

On-ramp No Metering Metering

demand (veh/hr) g4 900 1200 1500 600 900 1200 1500
Stop time (sec)
Mainline 0.04 4.11 1056  11.25 0 0 0 0
On-ramp 0 0.95 59.41 67.9  437.98 49801 500.76  506.27
Number of stops (#/veh)
Mainline 0 0.11 0.21 0.22 0 0 0 0

On-ramp 0] 0.11 0.62 0.67 1 1 1 1

Fuel Consumption and Emissions on SR-99 network

The simulation of SR-99 network is trying to further examine the power of Autonomie to quantify the
corresponding environmental impact, under a realistic and complicated circumstance when the on-ramp
metering is implemented for the whole system. The local responsive algorithm helps mitigate the mainline
traffic congestion via adding more restrictions to the on-ramp traffic summarizes the various types of emission
and fuel consumption estimates for both no metering and local responsive ramp metering case. We can see that
emissions for mainline without metering are all a little bit smaller than those with local responsive metering,
while these estimates at on-ramps without metering are all much smaller than those with metering (except the
fuel economy measurement). However, it’s worth mentioning that fuel economy (unit: miles per gallon) for
mainline traffic after activating the LRRM increases about 6.5%, indicating that mainline traffic gets some
environmental benefits from the LRRM. As for the overall performance, all the measurements get worse,
which are consistent with the previous findings that the mainline throughput get decreased due to the metering.
All these findings correspond to the mobility performance. Therefore, although the LRRM can bring some
benefits for the mainline traffic, the overall environmental performance cannot be improved. This is a good
example to show that inefficient control strategies such as the SR-99 local responsive ramp metering can do
the opposite to fuel consumption and emissions. Thus, in future studies, more efficient ramp metering control
strategies need to be adopted such as fuzzy logic control or coordinated ramp metering (CRM) control.
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Table 1.2.1.4 Summary of Emission and Fuel Consumption Estimates (No metering vs. local responsive
ramp metering)

Ramp metering

strategy No metering Local responsive
Overall Mainline On-ramp Overall Mainline On-ramp
Fuel economy (mpg) 29.06 27.88 61.69 27.95 29.68 50.71
NOx (kg/veh/mile) 0.00017 0.00018 9E-05 0.00018 0.00019 0.00013
CO (kg/veh/mile) 0.00171 0.00185 0.00091 0.00177 0.00191 0.00128
CO2 (kg/veh/mile) 0.253 0.273 0.134 0.262 0.283 0.190

HC (kg/veh/mile) 0.000316 0.000341 0.000168 0.000327 0.000353 0.000237

PM 2.5 (kg/veh/mile) 1.2E-05 1.29E-05 6.34E-06 1.24E-05 1.34E-05 8.96E-06

Conclusions

By using a state-of-the-art microscopic traffic model, this study explores the influence of ACC and CACC
operations on vehicle fuel efficiency. The traffic models not only accurately reproduce the interactions among
the manually driven vehicles, ACC vehicles, and CACC vehicles, but also explicitly depict the operation of
CACC vehicle strings and the impacts of the advanced signal control algorithm. Such modeling capabilities are
critical for quantifying the impact of the advanced technologies on vehicle fuel consumption and
understanding the mechanisms behind the observations. Our study takes both traffic mobility and energy
consumption impacts into consideration. The results should be able to provide comprehensive insights to help
guide future ACC/CACC implementation decisions.

Our findings highlight the importance of incorporating vehicle connectivity into the ACC systems. While the
ACC controller can make the traffic flow unstable, CACC can improve the traffic flow stability and efficiency
by allowing CACC vehicle string operations. Comparing the 100% ACC case and the 100% CACC case, the
fuel consumption rate of the former is almost twice that of the latter. The CACC string operation can also lead
to substantial freeway capacity improvement without degrading the per vehicle fuel efficiency. At 100%
CACC market penetration, the capacity can increase 49% while maintaining equivalent vehicle fuel efficiency.
The benefit of CACC is very small at lower market penetrations. But such a condition can be significantly
improved once the ML or VAD strategy is implemented. At 40% market penetration, these strategies can
increase the capacity by 15% to 19%, which is significantly higher than the 1% increase in capacity achieved
without ML or VAD.

The performance of the cooperative signal control algorithm has been tested against an actuated signal
controller at a simulated four-way intersection. The test results show that the algorithm can improve the
average intersection speed by 1.7% to 13.6% and the average vehicle MPG by 2.2% to 15.3% when the
intersection demand equals the capacity measured in the manual vehicle only case. The most significant impact
is observed in the lower CACC market penetration cases. Under those cases, the algorithm can substantially
improve the traffic mobility and vehicle fuel economy by reducing or eliminating the need to wait for multiple
cycles before passing the intersection. In the medium or high CACC market penetration case, the algorithm
performs the best when the traffic demand is close to the intersection capacity measured under the actuated
signal control. Particularly, the average speed is increased by 13% and average MPG by 11% in the 100%
CACC case; and the average speed is raised by 36% and MPG by 34% in the 40% CACC case. The algorithm
also performs well in the 0% CACC case where it completely relies on the traffic information monitored by the
fixed traffic sensors. The speed and MPG can be raised by 12.5% and 12.2%, respectively. The improvement
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in the manual vehicle only case demonstrates the robustness of the proposed algorithm. When the non-CACC
vehicles are all connected, the performance of the algorithm can be further improved in the 0% CACC case
(e.g., 37% speed increase and 29% MPG increase). Nonetheless, the benefit of the connected non-CACC
vehicles decreases significantly as the CACC market penetration reaches 20%. It indicates that the information
required by the algorithm can be sufficiently obtained from the CACC vehicles once the market penetration is
20% or higher.

We have also performed a preliminary analysis that quantifies the intersection performance when the proposed
signal control algorithm is combined with a vehicle trajectory planning algorithm. This part of work is still
ongoing.

This study also conducted microscopic simulations to examine whether the Autonomie model can capture the
environmental impacts induced by the traffic management controls. Simulations of a freeway merge with four
mainline lanes and an on-ramp were calibrated to real world conditions, and detailed vehicle trajectory data
were collected from the simulations and used as inputs for determining the average fuel consumption and
emissions using a model known as Autonomie. The results of the simulation experiments showed that the
average fuel consumption and emissions per distance and per vehicle increases as the on-ramp demand
increases, and can be significantly higher (as much as 57% higher) when the capacity drop is present.
However, the simulations also revealed that metering the on-ramp at a fixed rate of 400 veh/hr prevented
capacity drop when the on-ramp demand is high (600 veh/hr or above), and further reduce the average fuel
consumption and emissions by up to 20%. Afterwards, the simulations of SR-99 corridor were chosen to
further examine the impacts of ramp metering on emission and fuel consumptions, under realistic and
complicated circumstance. The Autonomie model showed that the LRRM could only bring some
environmental benefits for the mainline traffic (6.5% increase of fuel economy), while the overall emission and
fuel consumption performance get worse.

This study provided a better understanding of how Autonomie model can capture the variation of vehicle fuel
consumption and emissions at freeway merges due to the ramp metering. As the local responsive ramp
metering control cannot work efficiently to benefit the whole SR-99 corridor, the next step is to look at another
realistic freeway corridor that performs well with implemented traffic management and control methods and
investigate their impacts on fuel consumption and emissions. This will further demonstrate that when traffic
management is done properly and efficiently, it can have environmental benefits. Furthermore, other traffic
management and control approaches such as variable speed limit and managed lanes can be explored, as the
emissions and fuel consumption calculated by Autonomie model are reliable and accurate.
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Project Introduction

This task seeks to estimate the mobility, energy, and mobility, energy, productivity (MEP) impacts of different
connected and automated vehicle (CAV) technologies in a metropolitan region. Since there are no data on
CAVs, we rely on rational assumptions and behavioral models. Communication technologies and increased
levels of automation probably will reshape urban transportation in the coming decades. CAVs may have an
impact in different ways. Vehicles with a higher degree of automation can drive at shorter gaps, and this could
increase road capacity. In addition, transportation management strategies, such as traffic signals, can be greatly
improved by the availability of more information due to vehicles’ communication capabilities. Furthermore,
the combination of these aspects opens possibilities for new applications and services. Therefore, it is
necessary to understand the potential impacts of CAVs on future mobility.

Objectives
The main objective of this task is to quantify the mobility, energy, and MEP impacts of different CAV
technologies. The following are the major components:

e Energy, mobility, and MEP impact of shared automated vehicle (SAV) fleets;
e Energy, mobility, and MEP impact of household CAV sharing; and
e Impact of CAV technology on traffic flow from microsimulation.

Approach

Energy, Mobility, and MEP Impacts of SAV Fleets

Dynamic ride-sharing services have become more common in recent years. When these services are executed
correctly, they provide cheaper but more reliable service to travelers, and the total vehicle miles traveled
(VMT) and energy use are minimized. A simple heuristic algorithm that is developed and implemented is
based on vehicle proximity and total traveler delay. Another model improvement is “geofencing.” Past studies
point to the rise in VMT and empty miles traveled with the use of SAVs. Research has shown that dynamic
ride-sharing can mitigate this issue, but the percentage of travelers willing to share their rides in the near future
remains low (Krueger et al. 2016; Gurumurthy and Kockelman 2019). With the sprawling nature of urban
regions in the United States, trips being made, for example, from a city’s central business district (CBD) to a
suburban or exurban home are, on average, longer than the average trip. SAVs are expected to provide cost
savings and emission benefits, but at the same time, an in-depth analysis of policies that can curb rising VMT
needs to be conducted. Fagnant et al. (2015) suggest that areas with higher trip densities have better fleet
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performance metrics and add fewer VMT. Constraining an SAV fleet’s service within such a carefully chosen
“geofence” may be key to mitigating congestion. Figure 1.2.2.1 shows a flowchart of SAV operations in
POLARIS, our transportation system simulation tool.

Idle Vehicles

+ Zone-based
structure i

* R-Tree structure '————>| Request Assignment |<- ————————————————————————— —>| Store Trip Request Order |<- ------ ->| Pickup & Dropoff Actions

4

€
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Operator

| Repositioning Strategy |<— ———————————————————

En-route rerouting

Figure 1.2.2.1 Flowchart for SAV fleet operation in POLARIS

Energy, Mobility, and MEP Impact of Household CAV Sharing

There are more than 10 million households in the Chicago Metropolitan Area. In a scenario in which most of
these households own one or more CAVs, it is a challenge to model how household members share their
available fleet. First, we converted our existing intrahousehold vehicle-sharing (IHVS) optimization code from
Gurobi to CPLEX and then modified it to run on a high-performance computer (HPC). Finally, we have a
workflow in which POLARIS is run a local workstation and communicates with the HPC for running the
IHVS optimization code.

CAV Technology Impact on Traffic flow from Microsimulation

Since POLARIS uses a mesoscopic traffic model, car-following and lane-changing behaviors are not modeled
directly, but their effects are captured using the fundamental diagrams. These models are critical for the
modeling of platoons, as well as regular traffic. After developing car-following and lane-changing models
under different market penetration rates of CAVs in a microscopic simulation framework, we have updated the
fundamental diagrams used in the mesoscopic simulation framework of POLARIS.

Results

Geographically Constrained SAV Operation (Geofencing)

Six scenarios were investigated: five with distinct geofences and, for baseline comparison, one without a fence.
Figure 1.2.2.2 depicts the geofence scenarios. All the fences include the areas of the fences inscribed in the
Chicago Metropolitan Area. For example, the exurban core area (depicted in blue in Figure 1.2.2.2) includes all
the zones of the suburban core, city of Chicago, urban core, and downtown Chicago. In addition, all scenarios
assumed three different levels of vehicle ownership reduction: 10%, 50%, and 100%. A higher reduction in
vehicle ownership tends to increase transportation network company (TNC) demand.
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Table 1.2.4.1 summarizes the results. Without a geofence, average wait times were consistently higher across
all ownership scenarios than those for scenarios with fences. System VMT was reduced the least in the
scenario without a fence largely owing to a higher empty VMT (eVMT) of the SAV fleet. A lower rate of SAV
requests in the 10% reduction scenario translated to more of them being served, compared to the 50% scenario
with the same fleet. The percentage of requests met rose significantly in these two scenarios with the use of
geofences because of higher trip densities. When all trips were served by SAVs, the increase in percentage of
requests met was not significant. This result may be due to the larger fleet required to serve the region without

the fences to begin with.
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Figure 1.2.2.2 Spatial extent of geofencing (overlapped) in the Chicago Metropolitan Area

Geofences chosen around the CBD or urban core did not prove to be useful, and lower vehicle ownership was
not seen to be influential since the number of households in the CBD is likely low compared to that in the
suburbs. Nearly half the fleet’s VMT was without a passenger, and average wait times were 5 minutes (in the
10% and 50% scenarios) to 15 minutes (in the 100% scenario) more depending on the percentage reduction in
ownership. System VMT was still lower than the baseline scenario because the share of SAV VMT was very
low in the 10% and 50% ownership reduction scenarios. The large reductions in VMT observed under the
geofences in the 100% scenario were counterintuitive and may have been a result of undercounting the VMT
of a trip unserved by an SAV outside of the geofence. In the initial stages of SAV adoption, many short trips
within a well-developed CBD is most likely to be captured by transit or other nonmotorized modes.

Table 1.2.2.1 Fleet Metrics by Geofence Scenario and Vehicle Ownership Reduction

Avg. Avg. o
A 61 Geofence Wait Assighm oD A\{g. ol % Avg. Idle % Change
HH . . > Requests Trips per ; .
. Scenario Time ent Time . Time in VMT
Vehicles . . Met Vehicle
(min) (min)
10% Ownership Reduction
0.59 Downtown 15.9 0.6 64.8 11.3 74.8 -4.6
0.68 Urban core 14.1 0.6 49.2 7.8 83.7 -4.8
0.95 City of Chicago 6.5 0.5 63.3 13.0 73.7 -4.3
1.08 Suburban core 5.5 0.5 99.8 12.9 73.9 -4.4
1.35 Exurban core 7.0 0.6 99.1 14.7 67.5 -3.9
1.41 No fence 10.1 0.8 89.1 16.3 57.9 -3.0
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Avg. Avg.

0
Ave. # of Geofence Wait Assighm G A\{g. il % Avg. Idle % Change
HH . . > Requests Trips per ; .
. Scenario Time ent Time . Time in VMT
Vehicles . ; Met Vehicle
(min) (min)
50% Vehicle Ownership Reduction
0.33 Downtown 17.3 1.3 60.5 15.4 62.3 -19.1
0.38 Urban core 15.5 0.6 71.7 11.1 75.0 -18.9
0.55 City of Chicago 8.0 0.7 90.6 19.3 62.2 -18.6
0.63 Suburban Core 7.4 0.6 91.4 20.3 60.2 -18.4
0.81 Exurban core 11.8 1.2 79.6 25.2 42.6 -16.5
0.85 No fence 13.0 1.4 69.4 22.3 45.5 -15.2
100% Vehicle Ownership Reduction
0 Downtown 24.1 0.7 47.8 5.6 81.1 -27.3
0 Urban core 20.5 0.7 58.9 4.1 87.8 -26.7
0 City of Chicago 5.3 0.5 92.4 7.6 87.0 -25.1
0 Suburban core 4.6 0.5 94.9 9.1 84.7 -24.5
0 Exurban Core 7.0 0.6 92.8 16.8 66.5 -20.0
0 No fence 9.4 0.7 92.3 18.1 56.8 -13.1
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Figure 1.2.2.3 Calibrated fundamental diagrams for the four models with varying penetration rates
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CACC Impacts on Traffic Flow

Location-specific fundamental diagrams were calibrated for different locations based on microscopic
simulation. Figure 1.2.2.3 depicts the fundamental diagram for the four models with varying penetration rates.

The traffic flow simulation model in POLARIS was adapted in order to replicate the generated curves. Since
the traffic flow model in POLARIS assumes a triangular fundamental diagram (density-flow relationship), the
model and parameter were implemented in POLARIS with a triangular fundamental diagram. The relative
impacts of the penetration rate of CACC on capacity remained the same.

Impacts of Privately-Owned Automated Vehicles

A main concern related to fully automated vehicles (AVs) is an increase in travel demand due to empty trips.
For privately owned AVs, empty trips arise when an AV need to be repositioned to serve a household member
at a different location than its last drop-off. Also, empty trips can occur when vehicles are sent home to avoid
parking costs. In this study, we assessed the impacts of private AVs based on household AV trip schedules
generated according to the household members’ activity plan. The use of private AVs leads to drastically
increased VMT. With a 52% penetration of private AVs, there is an increase of 30% in VMT. This is driven by
two primary phenomena: the increase in unloaded VMT due to inefficient repositioning in the private-AV
scenario, and the increase in overall VMT driven by the assumed reduction in value of travel time (VOTT) in a
private AV. Both findings are displayed in Figure 1.2.2.4, which shows the distribution of vehicle hours
traveled (VHT) by time of day. The temporal VHT is split by whether the vehicle is a private AV or SAV fleet,
the automation level, and whether the vehicle is driving empty. There is substantially more travel with much of
that taking place within the private-AV scenario (solid orange); this is driven largely by the VOTT reduction.
However, there is also additional unloaded travel. Compared to a scenario in which AVs are shared, the
unloaded travel occurs only in SAV (automated TNC) vehicles, with only 14% of total SAV travel hours being
unloaded. However, in the C-high scenario, there is a much greater amount of travel in private AVs, and
almost 22% of that travel is occurring in unloaded vehicles. This means that overall, fully 17% of all VHT in
the system are driven unloaded in this scenario.
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Figure 1.2.2.4 Temporal distribution of VHT by auto-based mode for (a) SAV and (b) private-AV scenarios

The finding that private automation results in higher VMT is corroborated by previous studies conducted by
Harb et al. (2018). However, the naturalistic experiment conducted by Harb et al. (2018) produced a higher
percentage of zero-occupant vehicle (ZOV) trips than the current study, resulting in a somewhat higher VMT
compared to the current study. This might be because in that study, ZOV trips (driven by chauffeurs)
conducted household errands. In the current study ZOV trips were conducted exclusively to reposition the
vehicle without any opportunity to address household needs. In addition, in the current study only 52% of
households owned an AV, so if ownership was extended to 100%, the VMT increase of 30% could have
doubled, which would match the experimental finding of an 85% increase quite closely.
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The findings of the SAV and private-AV scenarios studied here broadly align with previous simulation
observations regarding VMT and VHT increases as well. The 30% increase in VMT observed in this study is
substantially higher than the 16% increase observed in the AV scenario by Simoni et al. (2019), although in
that study AV repositioning was not simulated, and this accounted for a substantial portion of the increase in
this study. This could also explain why that study found a greater VMT increase in the SAV scenario than in
the AV scenario, which is the opposite finding here. Zhao and Kockelman (2018) also found a VMT increase
of up to 41%, although that study mentions significant limitations due to the use of a four-step travel demand
model, such as the lack of repositioning travel. Rodier et al. (2018) also found substantially lower increases in
VMT, up to 11% in AV and 18% in SAV scenarios, again opposite the findings in this study. In that study, the
lower VMT can be explained by the modest reduction in drive VOTT assumed (25%), along with the lack of
vehicle repositioning trips.

Conclusions

Different aspects of the impact of CAVs were studied. On one hand, CAVs can improve traffic flow efficiency
on freeways and SAV fleet efficiency can be improved by applying geofencing strategies. On the other hand,
privately owned CAVs can lead to a substantial increase in VMT propelled by ZOV trips when AVs are being
repositioned to serve another household member.
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Project Introduction

One significant way connected and automated vehicles (CAVs) can provide energy savings is through better
vehicle speed and/or powertrain control. Perception sensors and connectivity provide increased awareness of
the surrounding environment and enable control optimization, while automation provides the necessary level
of controllability for the application of the optimization. In parallel, vehicles feature an ever-broader range of
advanced powertrain technologies, from hybridization to transmissions with a high number of gears, designed
to improve overall vehicle efficiency. In this project, we research eco-driving and energy management
strategies for advanced powertrain-equipped CAVs, including conventional engine-powered vehicles, hybrid
vehicles (HEVs), and electric-powered vehicles (BEVs). We also analyze how vehicles are driven and, as a
result, develop models of existing CAV technologies and of human drivers, and integrate them into
RoadRunner, the tool we have created to support eco-driving research.

Objectives
The objectives of this task are as follows:

o To estimate the energy-saving potential of advanced powertrain technologies in the context of vehicle
automation and connectivity;

e To develop and evaluate eco-driving and energy management strategies relying on connectivity and/or
automation to provide maximum energy savings, especially for vehicles with advanced powertrain
technologies; and

o To facilitate the development of energy-saving automated driving algorithms by the industry and
research community through model-based system engineering.

Approach

Eco-driving for CAV

Eco-driving consists of adjusting vehicle speed to minimize energy consumption. Eco-driving can be
systematically applied to automated vehicles, because of the control of the speed by a machine. In a
comprehensive picture, vehicle energy consumption takes place in three stages: well-to-tank, tank-to-vehicle,
and vehicle-to-miles. The eco-driving problem relates to the last two stages—it concerns not only the vehicle
kinetic and potential energy conversion but also the onboard energy efficiency. We have developed two eco-
driving control strategies: speed-only eco-driving, which focuses mostly on the vehicle-to-miles stage, and
speed+powertrain eco-driving, which considers the tank-to-vehicle and vehicle-to-miles stages as a compound
problem.
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In the speed-only eco-driving strategy, we formulated an optimal control problem to minimize acceleration
energy subject to the state constraints imposed by speed limits and the preceding vehicle and solved it to derive
analytical closed-form optimal solutions through optimal control theory. The closed-form solutions as a
function of boundary conditions guarantee a high updating rate because of efficient computation without any
numerical solvers; moreover, they can be applied to all types of vehicles (e.g., BEVs, conventional internal
combustion engine vehicles).

In the speed+powertrain strategy, the objective of the optimal control is the explicit minimization of energy
consumption, and it directly controls the powertrain components, such as engine torque and gear for a
conventional vehicle, as well as motor torque in a parallel hybrid vehicle. In addition to incorporating the
efficiency map of powertrain components, powertrain-aware eco-driving has a better understanding of the
kinetic energy recuperation capability because of its detailed modeling of the powertrain.

We not only solved the optimization problems but also moved the eco-driving strategies closer to real-world
implementation, in order to properly assess their potential impact in the real world. The eco-driving strategies
were integrated into “online” controllers within RoadRunner; they can run in real-time systems, use inputs
realistically available in a CAV, output commands necessary for the proper operation of the vehicle, and are
robust enough to deal with perturbations, dynamic response, and uncertainty in the prediction of the future
horizon. The resulting controllers are also designed to work in a broad range of operating conditions, including
cruising, car-following, and intersection approach and departure. In order to be real-world implementable, the
eco-driver controllers make use of the receding horizon concept. At each time step, the optimization algorithms
solve the eco-driving problem over an entire finite horizon (e.g., 250 meters), but apply only the first step of
the solution. In the following time step, the horizon window moves one step further and the optimization is
performed again, thus creating a feedback loop critical to the stability of the system.

Adaptive Cruise-Control Model Development and Validation in RoadRunner

Many modern vehicles already feature partial driving automation, for example, longitudinal speed control for
highway driving. With adaptive cruise control (ACC), the vehicle drives at a speed set by the driver if no
preceding vehicle is detected (using radar or stereoscopic cameras), and otherwise modulates its speed to
maintain a safe distance with the preceding vehicle. The ACC feature of the 2016 Toyota Prius Prime was
tested on a chassis dynamometer. With no actual moving vehicle to detect, a method of overwriting the gap
measurement from the sensor was designed and implemented. As a result, it is possible to test a situation in
which the ACC controller commands the actual vehicle on the dynamometer to follow a virtual lead vehicle,
itself following a set drive cycle. The data were then used to validate an ACC model in RoadRunner and
applied to a validated Autonomie model of the Prius Prime. As shown in Figure 1.2.3.1, the inter-vehicle gap is
well matched.
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Figure 1.2.3.1 Comparison of the adaptive cruise control model in RoadRunner with test data
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Human Driver Model Development and Validation in RoadRunner

Modeling the human driver is critical for the development and evaluation of powertrain and/or driving controls
relying on automation and connectivity. Thanks to high-fidelity human driver models, it is possible to surround
in simulation an energy-optimized vehicle with vehicles realistically replicating human-driven vehicles. A
good human driver model is also necessary as a baseline when the potential benefits of new control algorithms
are being evaluated. As a result, we have developed a high-fidelity dynamic human driver model, combining
data-driven and analytical approaches, and have integrated it into RoadRunner.

The human driver model consists of two parts: a Perception and Decision (P&D) model, and an action model,
as shown in Figure 1.2.3.2. The P&D model aims to capture the cognitive process occurring in the human
brain. The P&D model determines the driving regimes (e.g., accelerating to increase speed, cruising to
maintain speed, braking to stop) and its timing and duration based on the current situation. On the other hand,
the action model aims to capture human driving behaviors that have an impact on the state of the vehicle
(position, speed, and acceleration) based on Newtonian laws of motion. The action model is bounded by the
regimes and conditions computed by the P&D model.
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Figure 1.2.3.2 Schematic diagram of the human driver model: P&D model [left] and action model [right]

To validate the model, we used data collected by a highly instrumented vehicle driving on real roads, equipped
with a dash video camera, GPS tracker, and radar. Through filtering, map-matching, and machine-vision, we
established a dataset that includes road attributes (e.g., speed limit, road type), state of traffic lights, and
distance to preceding vehicle—all factors for driving decisions. We first focused on development and
validation of the action model. We assumed that drivers prioritize driving comfort, while avoiding any
collisions with the preceding vehicle and obeying traffic rules; this assumption leads to the formulation of
human driving as an optimal control problem minimizing jerk (the derivative of acceleration) energy. Deriving
analytical optimal solutions by employing optimal control theory can compute vehicle state trajectories with
low computational burden. Adding the state constraint imposed by the vehicle in front can describe car-
following features with anticipation of the vehicle in front. The trajectories of the vehicles in the post-
processed data were clustered into four distinct driving regimes—accelerating, cruising, coasting, and braking.
Based on the assumption of a perfect P&D model, the information required by the action model (i.e., boundary
conditions) was extracted for each driving regime. Results for 27 segments between two intersections
demonstrate that trajectories generated by the action model of the human driver using this information are well
matched with those of experimental data, as shown in Figure 1.2.3.3.
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Figure 1.2.3.3 Normalized cross correlation power (NCCP) between experimental and simulation data for 27 segments [top]
and for one sample [bottom].

Results
Study Setup

We estimated the energy benefits of eco-driving strategies for a midsize car, and for a variety of driving
scenarios and powertrain technologies, in a large-scale study summarized in Table 1.2.3.1.

Table 1.2.3.1 Summary of the Main Variables in the Case Study

Variable/Parameter Description

Conventional: powered by an internal combustion engine
HEV: parallel pre-transmission hybrid electric
o BEV: battery electric vehicle with 200-mile range

Powertrain (PT)

PT technology e Current technology
scenatrio o Short-term future technology: better engine/motor efficiency, lighter battery, etc.

e Baseline: no optimization
Control e Speed-only eco-driving [EcoDrv Spd/Accel]
e Speed+powertrain eco-driving [EcoDrv PT+Spd]

o No vehicle-to-infrastructure (V2I) information: vehicle does not receive any
Connectivity information from the outside.

e V2I: vehicle receives information about signal phase and timing.

Scenario Two vehicles following each other

Real-world routes extracted from HERE maps: 9 highway, 9 suburban, 6 urban, 6 mixed

Routes combining all types roads

One simulation includes two vehicles following each other; one or both vehicles feature an “advanced
control,” while the others use the baseline control. The baseline control is the human driver model. Each
control has an option of being connected to the infrastructure (V2I), in which case it uses an “eco-approach”
algorithm to avoid idling at red lights. The baseline with V21 would correspond to a non-energy optimized
automated vehicle. Each vehicle includes an Autonomie powertrain model, corresponding to a vehicle created
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for the SMART workflow. We examine two powertrain technology scenarios: current technology and short-
term future with US DOE VTO targets.

Study Results

Figure 1.2.3.4 shows the speed profiles for various driving control strategies for the same example route for a
BEV. All three controllers with V2I connectivity have information about the current and future state of the
second traffic light (at 1,670 meters), and slow down before the light so as not to stop and idle, unlike the
baseline case without V2I, which must stop. The two vehicles with eco-driving controllers have smoother
speeds than the two baseline controllers.
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Figure 1.2.3.4 Speed traces for a BEV with different control strategies

The speed+powertrain eco-driving with V2I strategy shows the highest energy savings, up to 20% fuel savings
for the lead vehicle, as shown in Figure 1.2.3.5.
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Figure 1.2.3.5: Energy consumption savings relative to baseline control for a vehicle in lead position, with current
powertrain technology, for various powertrains

That strategy is particularly beneficial for the HEV, for which there is greater potential for optimization
because of the dual power sources. The speed-only eco-driving, however, also brings good results, especially
for the BEV, and is more robust to the lack of V2I connectivity. This results from the formulation of the
optimization, which is different in each strategy. The speed-only eco-driving tries to minimize the acceleration
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energy ([ a?), which may not always be energy-optimal but leads nonetheless to gentler accelerations and
smoother driving. The speed+powertrain strategy, on the other hand, explicitly minimizes energy consumption.
It often means stronger accelerations as high component efficiency occurs at higher loads, which may lead in
some cases to more energy-wasting braking events when the future horizon is unknown, as is the case without
V2I. For both strategies, energy savings are greater in urban situations than in highway situations, and V21
connectivity helps bring greater savings, at least an additional 5% in urban scenarios (compared to no V2I).

Eco-driving affects energy savings differently depending on the powertrain technology scenario; Figure 1.2.3.6
shows the energy savings for a conventional vehicle in lead position in both current and future technology
scenarios. For the conventional vehicle, there are significantly more energy savings in the future technology
scenario, for all eco-driving strategies. One reason is that eco-driving tends to reduce overall tractive effort and
thus the engine load, which often leads to lower engine efficiency. The future technology case, however,
assumes strong improvements in efficiency in these low load areas. This is especially true for the speed-only
control, in which lower engine loads are most prevalent.
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Figure 1.2.3.6 Energy consumption savings for lead vehicle, conventional, current versus future technologies

All controllers evaluated in the study can deal with a preceding vehicle, that is, car-following. It is therefore
also of interest to analyze the impact of eco-driving on the following vehicle. Here we examine two situations:
in the first one (Figure 1.2.3.7), a vehicle equipped in an optimized or eco-driving control strategy follows a
baseline vehicle and is compared to a baseline following another baseline. In the second situation (Figure
1.2.3.8), we compare the energy savings of two non-equipped, baseline vehicles, following another baseline or
an equipped vehicle. When an equipped vehicle follows a non-equipped vehicle (first case, Figure 1.2.3.7),
eco-driving still leads to energy savings, but they are lower than those when the vehicle is in a lead position
(Figure 1.2.3.5). This is because the lead vehicle constrains the preceding vehicle at least occasionally, so the
optimal unconstrained solution can no longer be applied. A good preceding vehicle speed prediction is also
critical to achieving optimal results; optimizing for speed can then be more robust.
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Figure 1.2.3.7 Energy consumption of following vehicle (control versus baseline) with current technology and various
powertrains

A non-equipped vehicle following an optimized one generally saves energy as well, as shown in Figure 1.2.3.8.
The following vehicle benefits from the anticipation (with V2I) or “smoother” driving of the lead vehicle. The
savings are greater for the conventional vehicle, which always benefits from reduced braking. The speed-only
eco-driving strategy is generally better for the following vehicle, as the speed+powertrain not only considers
kinetic energy optimization but also onboard energy management. Without that energy management
optimization aspect, the following vehicle may lose some of the benefits of the speed+powertrain strategy of
the lead vehicle.
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Figure 1.2.3.8 Energy consumption of following baseline vehicle (lead: control versus baseline) with current technology and
various powertrains
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Conclusions

In the final year of this 3-year project, we added new models to RoadRunner, implemented advanced eco-
driving algorithms for CAVs, and performed a large-scale study to evaluate their energy impacts. Our novel
approach to human driver modeling shows promising results and will be developed further with larger datasets
for training; it also provides a solid baseline scenario for the case study. We completed the development of the
eco-driving control strategy, optimizing both speed and powertrain for three types of powertrains and
demonstrated it provides the highest energy savings. We also developed a simpler and faster control that acts
upon the speed only, is not powertrain- specific, and yet also leads to good energy savings. Both controllers
were implemented in RoadRunner and can be implemented in real-time controllers. The large-scale study
showed that automation and connectivity combined with energy-focused control results in significant savings,
up to 20%, although results are highly dependent on the type of road and scenario. Vehicle-to-infrastructure
(V2I) connectivity enables better knowledge of the future horizon and improves the performance of the
optimization, especially for the speed+powertrain eco-driving strategy. Future research will focus on future
horizon prediction, larger case studies involving traffic conditions, and in-vehicle validation.
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Project Introduction

Connectivity and automation provide opportunities for implementation of innovative and effective system-
level monitoring and control. Coordination control systems for connected and automated vehicles (CAVs)
operating in different traffic scenarios can potentially improve traffic efficiency, safety, and energy
consumption. However, most of the current research in connectivity and automation is focused mainly on
safety leaving still many open questions and uncertainty regarding the energy impacts of these new
technologies. The uncertainties become even higher when the interaction between human drivers and vehicles
with connectivity and automation capabilities is considered. In this context, further exploration of mobility
gains and energy savings potential is needed. This project aims to investigate opportunities to optimize traffic
systems through connectivity and automation and assess their performance under different scenarios. It
explores the potential energy savings and efficiency improvements that can be achieved through coordination
control systems for CAVs, contributing to the SMART Mobility program goal of yielding meaningful insights
on how SMART technologies can improve Mobility Energy Productivity. It will also provide new insights
regarding efficient coordination/control strategies that could offer energy and mobility improvements. The
objective of the optimal merging coordination is to enable smoother traffic flow by controlling the merging
sequence and optimizing the vehicles’ speed profile

Objectives
Develop optimal vehicle coordination strategies to increase mobility energy efficiency and a simulation
framework to verify their effectiveness in partial and full CAVs market penetration scenarios

e Apply the developed coordination framework and assess its performance on traffic corridors considering
heterogenous traffic and different market penetration rates

Approach
The approach taken to accomplish the objectives of the project for this period of performance involved:

1. Simulation-based assessment of the CAVs optimal coordination framework applied to a single on-
ramp, considering different traffic scenarios, market penetration rates (MPR) and heterogeneous
traffic.

2. Selection, modeling and calibration of a real-world traffic corridor segment in VISSIM.
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3. Implementation and simulation-based assessment of the CAVs coordination framework on the
VISSIM corridor model.

4. Exploration of the challenges that communication related uncertainties can impose on the optimal
coordination framework (collaboration with University of Delaware)

5. Safety-oriented analysis. Used the driving volatility as a surrogate measure of safety to study the
safety impacts of optimal coordination in a highway on-ramp (unfunded collaboration with University
of Tennessee Knoxville)

Results

1. Simulation-based assessment of the CAVs optimal coordination framework applied to a single on-
ramp

The objective of the optimal lane merging &

coordination is to enable smoother traffic flow

by controlling the merging sequence and

optimizing the vehicles’ speed profile. We

performed analysis for a single on-ramp

(Figure 1.2.4.1) considering three traffic

demands, i.e., 1800 veh/h, 2000 veh/h and 2200

veh/h, and a 60%-40% ratio between the main

road and the on-ramp demand. For each Figure 1.2.4.1 On-ramp model used for analysis

scenario, we simulated a total of 12 CAVs

market penetration rates. To assess the fuel, energy and emissions implications, we compared the results for

each scenario against a baseline scenario where all the vehicles were human-driven. The estimates for the

measures of effectiveness (fuel, electrical consumption, emissions, etc.) were obtained using the workflow

baseline fleet scenario for current time (CT).

The plots in Figure 1.2.4.2 represent the average fuel economy change for the three traffic demands under the
CT fleet scenario and show that benefits are sensitive to traffic demand. The higher benefits in terms of
average fuel economy occur in scenarios with moderate congestion (e.g., 2000 veh/h) because the vehicles will
still have some freedom to accelerate/decelerate in an optimal way. Under heavy traffic, the vehicles are more
constrained in their responses due to the smaller headways and the idling condition starts dominating, reducing
the potential to improve the average fuel economy and save fuel. Still, the average fuel economy in heavier
traffic can increase between 2% to 20% depending on the MPR.

At lower traffic demands, the reduced traffic on the main road allows more human drivers to merge without
conflicts in the baseline scenario, avoiding significant acceleration/deceleration changes. This results in
already smoother travel patterns than in moderate traffic and thus reduced opportunities for improvement.
Nevertheless, the fuel economy at full penetration can increase to about 12%.

Change with Respect to Baseline Change with Respect to Baseline Change with Respect to Baseline
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Figure 1.2.4.2 Average fuel economy changes with respect to baseline for three traffic demand scenarios and different
market penetration rates of CAVs. The legends at the right of each figure indicate the percentage of LDCAVs and HDCAVs
respectively
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Notably, at lower MPR for all the simulated traffic demands, there is increased uncertainty regarding the
benefits in fuel economy due to CAVs being adversely affected by the non-smooth driving of the human-
driven vehicles when attempting to merge.

2. Selection, modeling and calibration of a real-world traffic corridor segment in VISSIM. A 6-mile
segment of the 175 corridor was selected based on traffic data availability
Based on traffic data availability, we modeled a 6-mile segment of the 175 corridor in VISSIM (Figure 1.2.4.3)
and calibrated it to resemble real traffic conditions. Traffic data, including volume, speed, and on/off ramp
traffic, were obtained from Tennessee Department of Transportation’s (TDOT) traffic sensors and cameras.
These data were then used to calibrate vehicles’ speed distributions as the measure of effectiveness (MOE).
The VISSIM model was calibrated so that vehicles’ speed distribution in the simulation model is comparable
to the field observations.

Figure 1.2.4.3. Corridor modeled in VISSIM and histogram of observed vs
simulated vehicle speeds in the 20.5 N mile marker

As part of the calibration process we used the Latin Hypercube Design, a design of experiment (DOE)
sampling method, to select 100 comprehensive parameter sets for the initial calibration. Each parameter set
was simulated in VISSIM, each with a different random seed. Results based on these simulation settings, in
terms of vehicle traveling speeds, along with the observed speeds from RDS data, are shown in Figure 1.2.4.3
(bottom right corner).

3. Implementation and simulation-based assessment of the CAVs coordination framework on the
VISSIM corridor model

The impacts of optimal CAVs coordination were assessed considering the five workflow baseline fleet scenarios:
current term (CT), short term low automation, short term high automation, long term low automation and long-
term high automation. For each scenario we study eight MPR as defined in the percentage of the average number
of electrified vehicles for each simulated fleet scenario are shown in Figure 1.2.4.4.

Connected and Automated Vehicles 95



Energy Efficient Mobility Systems

Table 1.2.4.1 Market Penetration Rates Considered for Assessment

Scenario: Baseline 2 3 4 5 6 7 8
%MPR Light

Duty CAVs 0 0 5 10 20 50 80 100
%MPR Heavy

Duty CAVs 0] 100 100 100 100 100 100 100

Electrified Vehicles Percentage
s mu
o a1 ]

Figure 1.2.4.4 Percentage of electrified vehicles considered for each fleet distribution scenario.

3.1 Current term fleet distribution

In the current time fleet scenario, the fuel savings tend to increase steadily with increased MPR when more
than 10% of the vehicles on the road are CAVs and reach a maximum of about 7% at full CAVs MPR (Figure
1.2.4.5). In contrast, the average electrical consumption can eventually increase under lower MPR but
decreases steadily when the MPR exceeds 50%. It is important to note that, the electrified vehicles obtained
when estimating the energy consumption account for only 1.54% of the fleet.

3.2 Results for short term fleet distribution

In the case of the short-term low automation scenario, the overall trend of the fuel savings is similar to that of
the current term when more than 10% of the vehicles on the network are CAVs. When only 5 % LDVs and
100% HDVs are CAVs the fuel consumption increases slightly. This result can be because the fleet is
randomly distributed when estimating the performance indicator. For example, although the speed profiles are
a constant across multiple simulation runs of a given scenario, the sequence of the vehicles following the speed
patterns change each time that a new fuel estimation is done (random ordering results in non-repeatability).
Regarding the electrical consumption, the savings increase when more than 20% of the vehicles are CAVs,
however at full penetration there is a slight increase in the electrical energy consumed. This particular case
requires further exploration, preliminary observations point to the fact that there is not always the same ratio
between the electrified vehicles types that are represented for each MPR scenario. One reason for this to
happen is that we only kept the fuel/energy consumption data for the vehicles that travelled at least a minimum
distance of 2.5 miles (ensuring that they have at least been coordinated through the first on-ramp) thus, some
electrified vehicles can be taken out among the discarded data.

In the short-term high automation scenario, there is not a steadily increasing pattern for the average fuel
consumption savings, but the savings can still range between 3 to 7% with more than 20% CAVs. For lower
market penetration rates, the level of savings is lower than for the CT an STL scenarios. This implies that at
lower MPR the additional electrical consumption due to sensors reduces the potential to save energy of the
coordination strategy.
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Figure 1.2.4.5 Fuel and energy consumption results for the current time fleet distribution scenario
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Figure 1.2.4.6 Average fuel and energy consumption results for the short-term scenario

3.3 Long term fleet distribution

In the long-term scenario, the trends for the average fuel consumption and the electrical savings is similar for
the low and high automation cases. Overall, the values for the fuel consumption case are slightly higher in the
case of high automation, while the contrary is observed for the case of the average electrical consumption, i.e.,
the values are lower for the high automation scenario. In this case is also apparent that the additional electrical
consumption due to the additional sensors of the highly automated vehicles reduces the potential of the optimal
coordination framework to save energy.
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Figure 1.2.4.7 Average fuel and energy consumption results for the long-term scenario

4. Exploration of the challenges that communication-related uncertainties can impose on the optimal
coordination framework (collaboration with University of Delaware)
Experiments were carried out in the University of Delaware
Scaled Smart City (UDSSC) (Figure 1.2.4.8) a 1:25 scale
testbed, designed to replicate real-world traffic scenarios and
test cutting-edge control technologies in a safe and scaled
environment. UDSSC is a fully integrated smart city, which
can be used to validate the efficiency of control and learning
algorithms and their applicability in hardware. It utilizes high-
end computers, a VICON motion capture system, and scaled
CAVs to simulate a variety of control strategies with up to 35
scaled CAVs. Each CAV has a Raspberry Pi 3B witha 1.2
GHz quad-core ARM processor and communicates with the

mainframe computer (Processor: Intel Core 17 — 6950X CPU

@ 3.00 GHz x 20, Memory: 125.8 Gb). Northern entry

We considered two loops of UDSSC (Figure 1.2.4.8) for the Merging Zone

path of CAVs, which includes a mainstream representing the

highway and a merging roadway connecting to it. Each loop Eastern entry

has a starting point which enables us to have enough CAVs

ready to run an experiment. In each experiment, a random Figure 1.2.4.8 University of Delaware Scaled
SMART City testbed

number of CAVs between 4 and 6 is assigned for each entry.
CAVs in mainstream comes from East to West, and CAVs
from north merges to the mainstream road.

In the baseline scenario CAV’s from the north should yield to the mainstream CAVs. In an optimal framework
with upper level control, upon arriving the control zone, CAVs compute the time that they should enter the
merging zone. A simple FIFO scheduling policy is chosen, i.e., the CAV which enters the control zone first,
must enter the merging zone first as well, each CAV computes its schedule upon entering the control zone and
find its energy optimal control input. Upon entering the control zone, we store the entry information of each

98 Connected and Automated Vehicles



FY 2019 Annual Progress Report

CAYV, namely, their position and intended merging time (time to reach the merging zone). Similarly, when the
CAV enters the merging zone, we store the actual merging time to quantify the error with respect to the
initially planned merging time. We ran 44 experiments in the UDSSC for the merging roadway scenario and
computed the scheduling error for all CAVs in all experiments. The summary of the error data statistics is
included in Table 1.2.4.2. The results show that, even though the errors are mainly distributed around 0, high
error values in the initial estimation of the merging time can still occur, which may jeopardize the safety of the
traffic network. Future work should aim to further study the causes of uncertainty, quantify and model the
errors in a explore methods to account for the uncertainty for calculation of the low-level control (optimal
speed).

Table 1.2.4.2 Summary of Statistics for the Entry Time Error

Maximum Mean Median Minimum Standard Deviation Variance

5.53 0.34 0.124 -5.46 0.73 0.53

5. Safety-Oriented Analysis

To investigate the efficiency and safety benefits
of enabling cooperative driving by enabling
automated vehicles to communicate with each
other, we modeled a merging scenario in PTV
VISSIM, based on the W I 94/N US 23 On-Ramp
in the Washtenaw county in Ann Arbor,
Michigan (Figure 1.2.4.9). The longer blue
segment represents the rightmost length of the
highway with a total distance of 1,086 m and the
on-ramp is represented by the shorter segment
with a total distance of 560 m. we assume that all
the vehicles share their state information which
includes their speed and position and are able to
communicate via V2X with other vehicle and

infrastructure; similar to (Letter & Elefteriadou, Figure 1.2.4.9 Traffic Simulation network in VISSIM based on the

2017; Z. Wang, Wu, & Barth, 2018) we only W194/N US 23 On-Ramp inN’:he;]'VgVashtenaw county in Ann Arbor,
ichigan.

model the rightmost lane of the highway for the
onramp merging and consider a single lane on-
ramp; the default lane change model in VISSIM is used to allow the vehicles to join the main road in the
merging zone. A baseline scenario in which all the vehicles are assumed to be human driven without
coordination is simulated and used to assess the effectiveness of the coordination system in terms of safety and
fuel consumption. Then, the optimal coordination system was simulated using the same traffic conditions as in
the baseline scenario.
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According to the results, waves of stop and go operation are seen on the ramp road for the baseline scenario.
Meanwhile, the coordination control system can save fuel consumption by about 25% (the average fuel
consumption is reduced by about 30%) as it resolves the stop-and-go waves. To evaluate the safety
performance of the coordination system, two surrogate safety performance measures were utilized: number of
longitudinal conflicts and driving volatility (X. Wang, Khattak, Liu, Masghati-Amoli, & Son, 2014). This
safety analysis revealed that, compared to the baseline scenario, the coordination system enhances the safety
performance of the merging area by eliminating the number of longitudinal conflicts. In addition, Figure
1.2.4.10 shows driving volatility significantly dropped under the optimal coordination systems for the ramp
segment, indicating improved safety performance. Although there was an increase in the main road speed
volatility given that the vehicles should adjust their speed to provide appropriate gaps for the vehicles merging
from the on-ramp, there is a slight reduction in the acceleration volatility which also contribute to a safer
operation.

Main Road Ramp Road
10 10
6 6
2 , E .
5 2
0 0
Baseline Optimized Baseline Optimized
Speed Volatility Acceleration Volatility Speed Volatility Acceleration Volatility

Figure 1.2.4.10 Speed and acceleration volatilities in the main road, and ramp

Conclusions

Our focus on FY19 has been on microsimulation-based analysis of the implications that optimal coordination
of CAVs can have when applied to merging on-ramps. We have considered efficiency and safety indicators
under different traffic scenarios with varying CAVs market penetration rates and heterogeneous vehicle fleets.
The analysis considering a single on-ramp showed that the benefits in terms of fuel economy/consumption are
highly sensitive to the traffic demand and the CAVs market penetration rate. Notably, at higher MPRs, i.e.,
more than 50%, the fuel economy benefits seem to increase proportionally with the MPR, while at lower MPR
values there is higher uncertainty on the benefits level.

The analysis considering a 6-mile segment of the 175 corridor revealed that, given a light traffic scenario, there
is opportunity to improve the traffic efficiency by enabling coordinated merging control mostly when the
CAVs MPR is higher than 20%. At lower penetration rates both the fuel and electricity consumption benefits
are low or might even increase. Future work should combine results of additional simulation runs to ensure
statistical significance.

It is important to highlight that the available traffic data was more representative of free flow conditions and
light traffic and as such, the benefits of applying coordination are moderate. Future work should consider
additional baseline traffic scenarios for an intracity corridor under different traffic conditions, i.e., from
moderate to heavy congestion to get more insights on the full range of benefits that is attainable through
coordination on real world corridors. Also, when computing the respective consumption indicators, we
considered the full vehicle fleet that travelled the corridor, independently of whether the vehicle was controlled
or not. While this way we might be accounting for the impact of coordination on the overall traffic network,
future work should be devoted to find appropriate ways to quantify the direct benefits of coordination and
explore how far upstream and downstream the merging point the traffic is affected/improved by the
coordination itself. We anticipate that corridors with shorter segments between on-ramps would render higher
percentages of improvement under similar traffic conditions. In addition, since the vehicles on the left-most
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lane are not being controlled, their fuel consumption will reduce the impact on the overall system fuel
consumption percentage improvement results.
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Project Introduction

The purpose of this task is to synthesize SMART Mobility and related research on Connected and Automated
Vehicles (CAVs) to a national level, to deliver estimated impacts of CAVs, and better understand the factors
on which these impacts depend.

Objectives
Task objectives include:

¢ Quantify potential impacts of specific Connected and Automated Vehicle (CAV) technologies at a
national level based on results of in-depth CAVs case studies and scenarios, in a bottom-up approach.

e Develop and apply an aggregate, medium-to-longer-term model of national/regional travel and energy
demand implications of CAVs, in a top-down approach

e Expand the previous CAV Bounding Report (Stephens et al., 2016), providing greater detail regarding
the factors, sensitivities, and interactions.

Approach

To quantify CAVs impacts nationally based on results of-in-depth studies (bottom-up), methods were
developed to 1) model the traffic flow results of POLARIS CAVs simulations in a way that can be used in a
national-level rollup, 2) aggregate vehicle-level energy use from other SMART Mobility tasks with traffic flow
changes estimates from the previous model.
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To model the national/regional-level travel and energy demand using the top-down approach, a national-level
modeling framework CAVESIM was developed to produce estimates of national or regional changes in
vehicle-miles-traveled (VMT) and fuel use.

To expand the previous CAV Bounding Report, results from SMART Mobility tasks and recent literature were
reviewed and synthesized to estimate the approximate distributions of CAVs impacts considering two dozen
factors and their possible interactions to give overall distributions of changes in energy use and travel demand.

The bottom-up approach for expanding travel demand proved to be challenging, and the transferability
methods developed in previous years, while successful for expanding some metrics from regional simulations
were not adequate for expanding VMT results (Shabanpour et al., 2018). However, models for other travel
demand metrics, specifically changes in traffic flows at a link level were successfully modeled using detailed
results from POLARIS simulations of CAVs in the Chicago metropolitan area. The changes in average daily
traffic (ADT) was the difference in traffic flow on each link from two scenarios modeled in POLARIS, one
with full penetration of CAVs with CACC and smart intersections (requiring no stopping), and the other a
baseline (no CAVs) scenario.

Traffic flow differences were modeled using two methods, K-nearest neighbors (KNN) and random forest
(RF). In both modeling approaches, 70% of the data were used for training, and 30% were used for validation.
Both models give the change in ADT using explanatory variables describing link properties, network
properties, and land use and population demographics in census block groups through which links pass.

The other portion of the prior fiscal year bottom-up approach development involved formulating a
methodology which estimated vehicle fuel efficiency in different driving conditions (separately for various
combinations of powertrain and CAV versus non-CAV technologies) and subsequently weighted the
condition-specific energy efficiency by the amount of driving that occurs in each condition. Full national-level
application of this methodology under different scenarios was not supported in FY 19, but wrap up activities
that were supported, as summarized in the Results section below.

The top-down approach in CAVESIM is meant to quickly analyze changes in VMT and passenger-miles-
traveled (PMT), and energy use for various CAVs scenarios at a national level. CAVESIM is an aggregate
national impacts model that integrates market and economic drivers using established theory of
consumer/traveler economic behavior. The approach utilized an economic equilibrium framework to account
for interactions between full travel cost (fuel, vehicle, time, other) and other attributes and constraints
important to consumers and producers, and to estimate market outcomes of travel demand, vehicle efficiency,
congestion and speed, energy use, and emissions. CAVESIM includes some reduced form representations of
results from other technology and travel simulation models (e.g., CAV technologies and energy intensity, and
travel activity and congestion), and can integrate key technological and behavioral results from more detailed
simulation models.

CAVESIM represents nine technological mechanisms by which automation can alter vehicle energy efficiency
and costs, as well as accounting for the effects of electrification and shared mobility. Other “mechanisms” or
impacts of technology have direct or indirect effects on demand, i.e., through altering travel time cost or
inducing new demand from underserved demographic segments. Vehicles types are identified with demand
segments, consistent with the SMART Mobility analysis workflow, are distinguished by level of automation (3
types), fuel-type/drivetrain (currently 3 types), and vehicle use case (private or shared). Each vehicle’s energy
intensity is based on the assumed technology set and the vehicle type and demand segment categories, which
alter the energy intensity of the base vehicle type (conventional gasoline, no automation). VMT responses are
based on associated changes in total travel cost and consumer utility maximization.

The updated study of CAVs energy and travel impacts estimated distributions of reported CAVs impacts for 24
factors, accounting for their interactions. Estimated impacts on travel demand (VMT), fuel economy, and
energy were collected from over 400 sources. Distributions of impacts of each factor were estimated as well as
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the magnitude and sign of their interactions. Random draws of many samples from distributions of each factor
were used to estimate distributions of overall impacts. Subsets of results relevant to specific scenarios were
examined including the SMART Mobility common scenarios, partial automation, electrification, and others.

Results

Wrap-Up Activities on Bottom up Methodology Components

The two models developed to estimate changes in average daily traffic (ADT) flows due to CAVs have good
accuracy. In the KNN model achieved an accuracy of 83.5 %, and the RF model achieved an accuracy of
87.1%. These models, if validated for other areas, could be used to estimate changes in traffic flows in such
areas, and could possibly be extended to all links in the U.S. This would be useable in the energy aggregation
framework described below.

Wrap up activities for the energy aggregation approach included transfer of the methodology to estimate
regional-level energy consumption in the San Francisco Bay Area using Lawrence Berkeley National
Laboratory’s BEAM model (see forthcoming publication of Capstone Reports for the Workflow and for the
CAVs activities under the SMART Mobility Laboratory Consortium). In addition, publication of a journal
article featuring a variant of this methodology was completed in FY'19 jointly with collaborators from Volvo
Car Corporation based on real-world driving data for vehicles in both partially automated and in fully human-
driven operation (Zhu et al).

Top-Down Modeling of Integrated Market and Economic Drivers for National-Level CAV Sensitivities

The CAVESIM model was extended to account for some aspects of shared mobility, in particular “empty”
vehicle travel (deadheading) and sharing of rides (ride pooling). Ride pooling may be an important strategy for
the improvement of Mobility Energy Productivity by limiting growth in unproductive VMT or energy use
from vehicle repositioning and empty or low-occupancy vehicle travel. The purpose is to explore and represent
key outcomes and tradeoffs from ride-pooling at the aggregate level.

National-level analysis of a range of CAVs scenarios of highly automated vehicles using the CAVESIM model
showed that national VMT and fuel use by CAVs can be expected to differ from that of manual vehicles under
a range of assumptions about future CAV technology and mileage-based costs. Scenarios modeled show net
energy differences between -8% and +12% (Leiby and Rubin, 2018). The model accounts for major
components of generalized costs and their interdependencies, showing how different components of
generalized cost change under different economic, behavioral, or technological conditions.

Ride-pooling, i.e., ridesharing with increased vehicle occupancy, can help achieve the benefits of new mobility
systems and thus the impacts of automation technologies, and pooled riding (multiple passengers in shared
vehicles) on Vehicle Miles Traveled (VMT) and Passenger Miles Traveled (PMT) were also assessed. The
response is based on the economic benefits (travel cost savings, including vehicle operation costs and travel
time costs) and the potential disbenefits of ride pooling (disutility of sharing space, and incremental travel
distance and delay). Impacts were explored over a range of values and are shown in Figure 1.2.5.1 below.

Total cost per passenger mile in pooled travel is the sum of the passenger’s share of vehicle operating costs and
the passenger’s time cost. Passenger time cost when pooling is affected by two factors: the increased trip travel
time caused by any detours or delays in picking up or dropping off other passengers; and the disutility cost
associated with sharing ride space. We capture these latter effects, which are still being studied, through
elasticities with respect to pooling level. Increased occupancy from pooling can erode the travel-time-cost
advantage of ride services. This entails some tradeoff with pooling between the passenger’s declining share of
the vehicle operating costs with potentially rising trip duration and time costs.
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Figure 1.2.5.1 Highlighted PMT, and Energy changes with ride pooling for ideal and suboptimal sharing scenarios

Bounding Study Update

While the updated impact estimates show similar ranges as the 2016 report, in this update we estimate the
distributions of impacts considering interactions, and distributions show that the bounds are not likely
outcomes, and CAVs impacts on energy and vehicle-miles traveled (VMT) will very probably be more modest
than indicated by the bounds. Initial numbers show that 90% of cases are between a 25% reduction and a 160%
increase in VMT, but that energy efficiency improvements lead to an average increase in 30% in energy
consumption, with 90% of cases between -35% and +120% of a non-automated scenario. Distributions were
generated for VMT, changes in fuel consumption rate, and changes in total energy consumption. Figure 1.1.1.2
shows a histogram for changes in total energy consumption (relative to a no-CAVs baseline).

The top factors leading to increase in energy usage are induced travel from easier and cheaper travel (both
additional travel by today’s travelers and new travel by the currently underserved), repositioning of empty
vehicles, and on-vehicle electronics power draw, while the largest potential levers for reducing fuel
consumption are vehicle rightsizing, ridesharing, and drive smoothing. No single factor changes energy
consumption by more than a factor of two, though 9 of 24 factors change total energy consumption by more
than 10%. Some factors have large variations due to scenarios with widely different futures, e.g., ridesharing,
with most of the highest potential for VMT reductions coming from scenarios with fleet-owned vehicle. Other
factors have a large range of potential outcomes within the same scenarios, e.g., electronics power draw, with
large uncertainty in the magnitude of typical auxiliary electrical loads for CAVs hardware.

Finally, results of subsets of studies relevant to selected scenarios were analyzed, and distributions for several
scenarios are narrower than for the entire set of results most factors for partial automation have smaller impacts
on energy and VMT. Overall bounds of energy consumption are driven by outliers for each factor, and
estimated distributions show that more modest impacts are much more likely than extreme cases.
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Figure 1.2.5.2 Histogram showing changes in total light-duty vehicle energy consumption

Conclusions

Progress was made on modeling national CAVs energy and travel behavior impacts and in synthesizing results
of CAVs research by SMART Mobility investigators and by related research.

In the bottom-up subtask to expand results of detailed CAVs simulations, models were developed to give
changes in traffic flows due to CAVs deployment in the Chicago metropolitan area, taking results of
POLARIS simulations and other data as input.

Wrap up of the bottom-up subtask to expand results of detailed CAVs simulations included evaluating
modeling to estimate changes in traffic flows due to CAVs deployment in the Chicago metropolitan area based
on results of POLARIS simulations and other data as inputs. Additional activities included applying the energy
estimation roll-up methodology for metropolitan area modeling using BEAM in San Francisco, and jointly
publishing a journal article with colleagues from Volvo Car Corporation on applying a variation of this
methodology to estimate energy consumption impacts from a partial automation technology operating on-road.

Models developed for changes in traffic flow models reveal important dependencies on local link, network,
demographic, transportation, and land use characteristics. Changes are sensitive to details of the links and the
network and to some demographic variables, and are less sensitive to other variables; however, these other
variables still have a significant influence. Further examination of how these factors influence CAVs-induced
changes in traffic flows under different conditions may clarify system-level interactions between the factors,
and better understanding how CAVs can change travel patterns and energy use.

In the Top-down approach, CAVESIM results confirm how cost-responsive travel demand is attentive to
changes in different components of total road travel costs, of which energy is only a limited fraction. Thus, the
private economic incentives for energy efficiency are considered in the context of features and objectives
related to other travel costs, including those related to capital cost and convenience (value of travel time).
Benchmarked aggregate scenarios confirm some outcomes similar to more disaggregated urban-area models,
and highlight that net energy impacts still vary substantially across technological and behavioral (demand)
assumptions

CAVESIM results to date also indicate that cost-based strategies such as road use charges or disincentives for
zero-passenger travel can accompany the development of CAVs for their private mobility benefits while
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balancing other transportation planning objectives. Simulations for various levels of pooling (see above) show
that the effect of pooling on PMT (mobility) is likely to depend strongly on the efficiency of pooled tour
routing (which affects operating costs for the operator and time costs for the rider), as well as whether riders
have significant disutility from sharing space in the pooled vehicle.

The updated study of CAVs energy and travel impacts shows similar ranges as the 2016 report, but in this
update the estimated distributions show that the bounds are not likely outcomes, and that CAVs impacts on
energy and vehicle-miles traveled (VMT) will very probably be more modest than indicated by the bounds.

While the earlier study highlighted the uncertainty in energy consumption, interactions between factors were
not considered, and the wide range reported earlier range was driven by unlikely outlier points and not
representative of real-world scenarios. By examining distributions and considering interactions, the updated
study shows that while outcomes are still widely distributed, that 90% of cases are between a 3% reduction and
a 146% increase in VMT, but that energy efficiency improvements lead to an average increase of 20% for
energy consumption, with 90% of cases between -39% and +106% of a non-automated scenario.
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Project Introduction

This task is intended to continue the task proposed for FY18 for CACC truck intersection operational test. It is
a hardware and real-time simulation in the loop CACC truck operational test. It contains the following
components to facilitate a reasonable test scenario: (a) the intersection traffic is generated by the real-time
simulation with which the three CACC truck movements are imbedded; (b) Active Traffic Signal Control
(ATSC) is based on the real-time simulation generated traffic for all the movements; the ATSC algorithm is
intended to maximize the throughput and minimize the Total Delay directly, and to minimize the Total Energy
Consumption indirectly; we may consider mixed traffic in the sense that some simulated vehicle may be
assumed to be CAVs of certain types; (c) the intersection 2070 traffic controller; and (d) all components are
linked and synchronized using DSRC (Dedicated Short Range Communication), WIFI and wireless modem.
With such set-up, a similar traffic patter can be repeated many times to evaluate the energy consumption which
has two parts: (i) the overall traffic energy consumption based on an energy model developed in Task 1.2; and
(b) the actual fuel consumption of the three trucks measured by fuel rate from the J-1939 Bus (an SAE
standard CAN Bus for trucks).

Objectives

To assess more sophisticated arterial operation effects on fuel consumption for mixed traffic with CAVs.
Active Traffic Signal Control approaches will be developed to incorporate with CAV operation in real-time
simulation and in real-world for overall traffic direct mobility and indirect fuel saving improvement.

Approach

Figure 1.2.6.1 shows the Concept of Operation. It includes a test CAV fleet, a test track, a microscopic traffic
simulation model, a real-world traffic signal control system, a communication layer, and a server program.
Among those components, the test CAVs are the experiment subject. The test tack and traffic control system
offer a physical test environment. The simulation model is responsible for generating virtual traffic flow. The
server program is used to coordinate the operation of each test system via various communication medians. A
typical experiment in the testbed contains the following steps:

Step 1: Develop a simulation road network based on the physical layout of the test track.
Step 2: Initiate the traffic simulation to create a virtual traffic stream.

Step 3: Synchronize the clocks of the simulation, traffic signal controller, and test CAVs.
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Step 4: Build a connection between the traffic simulation and the traffic controller; start update traffic signals
based on the virtual traffic.

Step 5: Build a connection between the traffic simulation and the test CAVs; start the data interchange between

the real and virtual vehicles.

Step 6: Begin the test; start collecting test data.

AN :@ ,
\ m

2 Test CAVs

AN Test vehicle Virtual vehicle

AN Position

Position
) Trafﬁt; Speed Soeed
Simulation Acceleration p ) Road
Acceleration
network
Virtual vehicle

munication | Ve
"

Position o _
Speed
GIS
Acceleration @ ’—ﬂ, DSRC §
7~ =1
X w
- u -ti hg
Simulated signal - ! . fof_-c;:;?e =
control plan LAN / Serial Port Mobile Accurate tin e
/ Communication Network / Wi-Fi Positioning /
Localization

= Signal status Server
Program

Traffic Signal
Controller

Figure 1.2.6.1 Components and Data Flow of the Presented HIL Testbed

In this following, four subsections describe the research approach taken for this project. They describe the
important algorithms of the system operation with CAVs, including the test connected automated vehicle fleet,
microscopic traffic flow model, cooperative traffic signal control algorithm, and communication among test

systems.

4. CACC Trucks
The test fleet consists of three Volvo trucks equipped with Cooperative Adaptive Cruise Control (CACC). The
test vehicles have the capability to perform connected automated longitudinal control in a vehicle string with

shorter than normal truck following gaps [1],[3],[4],[5].

2. Microscopic Traffic Simulation Model in Aimsun
The microscopic simulation of mixed traffic in Aimsun with CAVs and manually driven vehicles were
developed in previous projects and reported in [6] — [14].
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3. Cooperative Traffic Signal Control Algorithm

The objective of the proposed cooperative signal control algorithm is to determine proper green times for the
eight-phase signal controller such that the resulting signal phase and timing (SPaT) scheme maximizes the
overall throughput of the intersection. This would indirectly improve the vehicle energy consumption
performance. It improves the intersection operation by assigning green time more efficiently than the fixed or
actuated signal control. Figure 1.2.6.2 shows a conceptual comparison between the cooperative algorithm and a
typical actuated control algorithm. With the actuated controller, vehicle A from the westbound approach would
trigger green time extensions. The extended green time only allows a few vehicles in the dashed box to pass
the intersection. On the other hand, our algorithm reallocates the green time such that the extended green time
is given to a different approach where several CACC strings are coming. The resulting green time split allows
vehicles in those CACC strings to pass the intersection without waiting for another green cycle, thus leading to
improved intersection throughput.

The algorithm reallocates the green time
€ mmmm———— ———— for maximizing the throughput.

Green tinle of m """-.._.___
the algorithm | "5 RO

Green time of the algorithm

Green time of the actuated control
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Figure 1.2.6.2 Comparison of the proposed algorithm and actuated control

The effectiveness of the algorithm has been tested in a simulated 4-way signalized intersection. The algorithm
substantially outperforms the traditional actuated controller as it perceives the traffic flow more
comprehensively and assigns the green time resource more efficiently than the traditional controller.
Particularly, the average vehicle speed and the average vehicle miles travelled per gallon fuel consumed
(MPG) can be increased by more than 10% when the CACC market penetration is 100%. In mixed traffic
where CACC fleets frequently interact with manually driven vehicles, the algorithm is found to be more
beneficial. The speed and MPG improvement exceed 30% when the CACC market penetration is 40%. The
signal control algorithm can bring about significant benefit even when the CACC market penetration is 0%.

4. Communication among Test Systems
The testbed adopts DSRC among the real-time simulation, the CAVs, and the traffic signal controller.

4.1. Communication between Test CAVs and Real-time Simulation

Since the communication occurs wirelessly via DSRC, the Basic Safety Message (BSM) defined by the J2735
standard is adopted to carry the location, speed, and acceleration information. The simulation, however, adopts
an enteral vehicle structure to store the vehicle status information. In this case, we have developed a data map
to match the data items used in different systems. Table 1.2.6.1 shows the data map.
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Table 1.2.6.1 Data Mapping Rule Linking Traffic Simulation and Test CAVs

Sim

ulation

Vehicle Status Struct {

int
long
double
double
double
double

}

ID;

Data Structure speed; (m/s)

acceleration; (m/s2)
latitude; (degree)
longitude; (degree)

timestamp; (millisecond)

Test CAV
Basic Safety Message (BSM) {
core_data {
int id;

long secMark; (millisecond)
long speed; (0.02 m/s precision)

long acceleration; (0.01 m/s2 precision)

long latitude; (10-7 degree precision)
long longitude; (10-7 degree precision)

4.2. Communication between Signal Controller and Simulation

The data interchange between the traffic signal controller and the simulation is achieved via the serial port
communication. The communication is initiated by the simulation 400 milliseconds before the end of a
simulated signal control cycle. At each update interval, the simulation sends the signal time plan of the next
cycle to the traffic controller. The signal message from the simulation contains the following fields with Phase

definition in Figure 1.2.6.3:

Table 1.2.6.2 Signal Time Messages from the Simulation

Byte Position Name
0 Cycle Length
1 Yellow time
2 All red time
3 Total time of phase 12
4 Total time of phase 2
5 Total time of phase 3
6 Total time of phase 4
7 Total time of phase 5
8 Total time of phase 6
9 Total time of phase 7
10 Total time of phase 8

Unit
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error
seconds, 0-254 seconds range, 255=error

seconds, 0-254 seconds range, 255=error

% The total time of a phase is defined as (green + yellow + all red) in seconds. The phase ID is defined as the

follows:

1U:'2-=>3W4U
—|—| L[]

Figure 1.2.6.3 Traffic Signal Control Phase Definition

4.3. Communication between Signal Controller and Test CAVs

The controller will send the BSM with the following messages:

e secMark = current time;
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o gspeed =0;

e acceleration = 0;

o latitude = latitude of the signal head;

o longitude = longitude of the signal head,

5. Server Program

The server program hosts the communication algorithms described in the previous section. In addition, it also
coordinates the execution of the overall test systems. The server program adopts the following procedure to
synchronize the test systems:

Table 1.2.6.3 Procedure for Test System Synchronization

Line Number Procedure
1 Pause the traffic simulation at the beginning of a simulated signal control cycle.

Send the simulated signal plan to the traffic controller for implementation in the next cycle.

3 Get the remaining time t_r of the current signal control cycle from the signal controller.
4 While t,. > 0

5 Continue pausing the traffic simulation.

6 Get updated t,..

7 End while.

8 Resume the traffic simulation (signal controller and traffic simulation synchronized).
9 Create placeholder vehicles that represent the test CAVs in the simulated network.
10 Stop all simulated vehicles and the placeholder vehicles.

11 Start sending speeds and locations of the simulated vehicles to the test CAVs.

12 The test CAVs start updating their movements based on the virtual traffic information.
13 Receive locations and speeds of the test CAVs.

14 While CAV locations # placeholder vehicle locations

15 Continue stopping all simulated vehicles.

16 Get updated CAV locations.

17 End while

18 Let all simulated vehicles update their movements based on the traffic flow model.
19 Update the movements of the placeholder vehicles based on the received CAV data.
20 Synchronization complete.
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A screen shot of the server program is shown in Figure 1.2.6.4. The main window of the program contains
three parts. The upper left part shows the real-time speed and location of the test CAVs and their virtual
preceding vehicle. The server receives the operation status of those vehicles every 100 milliseconds and
updates the plots every 1 second. The lower left part displays the information of the traffic signal controller.
The left subplot depicts the green times of each signal phase graphically. The current second counter is also
shown under the green time bars. The right subplot demonstrates the signal cycle length, cycle start time, and
green times for all phases. This gives an overview of the current signal control plan. The server obtains the
signal control information 400 milliseconds before the start of a signal cycle and updates the plots every 1
second. The right part of the server program is used to configure the HIL experiment. The user can specify the
IP addresses and communication ports of individual test systems in the panel.
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Figure 1.2.6.4 Snapshot of the Server Program

Results

CAV Experiments with the Testbed

We plan to carry out the experiments with the HIL testbed in Richmond Field Station, a UC Berkeley campus
that hosts an exclusive CAV test track, a test signalized intersection, and advanced traffic management and
communication systems. In the test, the cooperative signal control algorithm will be implemented in the real-
world controller and its impact on the CAV operation will be monitored. As Figure 1.2.6.4 shows, a test run
starts at the red bar and ends at the green bar of the test track. The test track has one lane each direction. No
lane changing behaviors are permitted on the test track. This makes the test environment easy to control. To
ensure safety of the test personals, there are no other traffic except the test CAVs in the test route during a test
run. The signalized intersection is located about 750 meters downstream from the start location. The test
vehicles would react to the traffic signals as they approach to the intersection. A roadside unit (RSU) installed
at the intersection continuously broadcasts the SPaT and virtual preceding vehicle information via DSRC every
100 milliseconds. The information allows the automated controllers of test CAVs to update the vehicle
acceleration and speed as if they are traveling in a real traffic stream. The drivers of the test CAVs are
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responsible to perform lane tracking and keeping tasks during the tests. They are also instructed to abort the
test should there is an emergency condition.

In the CAV experiments, we design test scenarios by considering parameters related to the traffic demand, the
signal control algorithm, and the CACC string operation (Figure 1.2.6.5). Particularly, the following variables
are considered to define the test scenarios:

Volume capacity ratio (V/C ratio): 0.8, 1.0 and 1.2.
Cooperative traffic signal control algorithm: on and off.
CACC string operation: one vehicle ACC operation and three vehicles CACC fleet.

The combination of the above variables would result in 12 experiment scenarios. We plan to take 10 runs for
each scenario for collecting enough data samples. The travel time, delay, average speed, vehicle fuel
consumption, and intersection throughput are used to quantify the performance of the test scenarios.

We are still running the CAV tests. The test result analysis will be presented in the forthcoming reports.

Simulated
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Figure 1.2.6.5 Layout of the test track

Conclusions

We have developed a HIL testbed for evaluating the impacts of CAV on arterial traffic operations. The testbed
contains SAE level 1 test CAVs that are equipped with CACC, a real-world intersection with advanced traffic
signal controller and communication systems, and real-time microscopic traffic simulation that generate virtual
traffic streams.

The testbed adopts a server program that allows researchers to execute functions of individual test systems
without working on complicated system configurations and/or modifications. In addition, it will coordinate the
operation of the test systems by establishing communication channels for real-time control message
interchange. The tool will also offer a graphic user interface that depicts the real-time vehicle and traffic signal
information during a test. The HIL testbed will help research teams carry out CAV system evaluation with the
state-of-the-art test capabilities. It is particularly useful for the prototype CAV system examination because it
greatly simplifies the CAV test process while maintaining a realistic test environment.

The project team is still working on the following tasks:
o Low speed control of CACC on three Volvo trucks for speed between 0-13 [mph]

e [ ocalization of CACC truck to determine in real-time the distance to intersection
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e System integration

Once those tasks have been accomplished, preliminary test will start. We will use the FY-2019 funding to
accomplish all the proposed tasks.
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1.2.7 Experimental Evaluation of Cooperative ACC for Passenger Cars: Development of
CACC Capability for Passenger Cars with Different Powertrains (LBNL, ANL) [Task
1.3.2]

Xiao-Yun Lu, Principal Investigator
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Lawrence Berkeley National Laboratory (LBNL)
1 Cyclotron Road, Berkeley, CA

E-mail: xiaoyunlu@lbl.gov

Erin Boyd, DOE Technology Manager

U.S. Department of Energy
E-mail: erin.boyd@ee.doe.gov

Start Date: October 1, 2018 End Date: September 30, 2019
Funding for LBNL (FY19): $400,000 DOE share: $400,000 Non-DOE share: $0

Project Introduction

Previous research and development on CACC (Cooperative Adaptive Cruise Control) at LBNL and PATH
(also in the U.S. and internationally) were mainly concentrated on IC engine vehicles of the same type for
transportation mobility purposes. CACC for vehicles of different types and different powertrains have not been
developed and implemented, although the automatic control of vehicles with different power sources will be an
important part of the energy savings for CACC. The work proposed here for DOE/VTO will develop the
CACC string with at least three power types: IC engine (gasoline and/or diesel), hybrid electric, and fully
electric, which offers many new possibilities. With this connected automated vehicle string platform,
DOE/VTO can conduct extensive research, development and data collection for energy saving and emission
reduction studies in the long run. The collected data in real-world traffic can be used for calibration of
microscopic simulation models for more accurate meso- and macroscopic level energy consumption and
emission change evaluation.

Objectives

This project will continue the work of FY18 on the development of CACC capabilities for 4 passenger cars
with different powertrains. It will include: initial control tuning, and refinement at low speed; on-track testing
of developed 4-vehicle CACC for fuel economy impacts of select CACC strategies at high speed; and
resolving any implementation issues related to mixed vehicle performance envelopes and benefits (fast
response) & challenges (SOC management and performance) due to electrification.

Approach

Proposed Scope of Work and Team Engagement

The following approaches are adopted in the development CACC capability on 4 passenger cars with different
powertrain types including: IC engine, hybrid electric parallel, hybrid electric serial, and full electric. They are
divided between LBNL and ANL teams.

The roles of LBNL team will include:
e Purchase and develop 4 Central Control Computer PC-104
e Install Real-time operating system QNX

e Develop lower level software including interfaces with commercially available remote sensors (such as
radar, lidar and video camera, or their combination), DSRC units and CAN Bus
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o Preliminarily implement CACC on the 4 vehicles in this phase

e Conduct initial test with ANL and INL on a test track; candidate test tracks include: (a) GoMentum
Station in California (http://gomentumstation.net/ ); (b) Navy Air Station in Alameda, in California; and
(c) the previous Crows Landing NASA airport, now named Crows Landing Industrial Business Park
(CLIBP), running by Stanislaus County. They are all in the proximity of Berkeley California.

o all the test sites are in the proximity of LBNL
Additional points:
o Each vehicle is to have a DSRC Unit (the cost will be added to the required budget)
o Accessible to CAN bus for data reading and control

1. The roles ANL team (Eric Rask’s Group) will include:
e Purchase and provide 4 passenger cars with the above specified powertrains

e Provide interface protocol with CAN Bus for real-time data reading and control

e Provide interface protocol with (accelerator and brake, whichever applicable) pedal deflection for real-
time lower level control activation

e Develop acceleration, accelerator/brake pedal mapping with Dynamometer at ANL
e Assist and coordinate with LBNL for CACC overall system development

Design of Control Structure

The overall control system structure is shown as in Figure 1.2.7.1. The upper level control is to generate
desired acceleration based on sensor measurement of the subject vehicle of the following information:

e Vehicle wheel speed information from CAN (Control Area Network) Bus

o Relative distance, speed and acceleration with respect to the immediate front vehicle based on remote
sensor measurement

o Front vehicle information passed by vehicle onboard DSRC (Dedicated Short-Range Communication)
unit. The information list has been described in detail in [CAV_DSRC].
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CACC System Software Structure
{
GPS Data Relative Position ]
L Determination J
W
'
Driver cmd SW Maneuver Coordination: desired
L position and velocity
Longitudinal Dynamics: engine-motor, driveline, tire, aerodynamic drag, etc
=> desire torque

Torque control [ Brake system control ]

Figure 1.2.7.1 Overall CACC System Structure for vehicles with all types of
powertrains

CACC Upper Level Control Strategy

The model for upper level control is based on a simple linear second order kinematic model. The feedback
control for upper level control is integrated in the following sense: CC, ACC and CACC share the same
feedback control structure of (Eq. I-1). The feedforward parts for CC, ACC and CACC are designed according
to the control objectives.

(1

& (t) =4 ges (Z) —Q, (t)
X (l‘ ) — distance w. 1. t. an inertia coordinate system
1% (l‘ ) — speed w. r. t. the inertia coordinate system
a (Z‘ ) — acceleration w. r. t. the inertia coordinate system
X e (l ) — relative distance to the preceding vehicle
Ve (t ) — preceding vehicle speed measure
a,., (t ) —p receding vehicle acceleration measured

(xref (t) 3 Vyer (t) N (t)) —reference distance, speed and acceleration for control w. r. t. an inertia coordinate
system
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(kl»,l , ki,Z) —are coefficients to be determined in control design in the following characteristic polynomial (Eq.
1-2).

The coefficients are chosen such that the following characteristic polynomials are Hurwitz for i =1,..., N
where N is the number of vehicles in the platoon or string:

1!1(5>~)=s2+(ki’1+—(i—1)ki,2Tg)s+k,.”2 )

Besides, the two eigenvalues are purposely chosen as real negative (—ﬂi A 2) such that

ki,z = /11',1 ’ﬂ’i,z
ki,l = _(ﬂ’i,l + /11‘,2) 3)
Ay >4, >0

The main task for upper level control of CC, ACC and CACC is to design the feedforward part, i.c., the
reference trajectories for the subject vehicle. With such control gain choice, the analysis in [ACC_CACC 2]
(also see the Appendix) proved that: (a) the feedback control on each vehicle is robustly stable; and (b) the
overall system is ultimately bounded string stable.

CACC System Development

ANL Team:
e Developed interface and lower level control of Hybrid vehicle Prius including acceleration and torque
mapping for lower level control with Dynamometer

o Developed interface strategies for Honda Accord (Hybrid) and Ford Taurus (IC engine) for CAN
accessing for data reading and for control actuation

e Developed mapping for acceleration pedal deflection, vehicle acceleration mapping for the whole speed
profiles for all three vehicles: Toyota Prius, Honda Accord, and Ford Torus

LBNL Team:
e Preliminarily developed PC-104 control computer

e Longitudinal control design

e Preliminarily implemented longitudinal control
e Two control methods implementations

e Preliminary system integration

e Preliminary low test on test track at Berkeley

Joint activities of LBNL, ANL and INL (Matthew Shirk):
e Experimental test planning

e Coordination of system development

e Collaborative execution of testing.

120 Connected and Automated Vehicles



Vehicle Mapping Development
For the purpose of developing CACC (Cooperative ACC) controllers for a mixed group of vehicles and
powertrains, it is important to obtain a comprehensive map of the powertrain response to longitudinal
acceleration commands. Not only does each vehicle have a different acceleration envelope, but the response to
an acceleration command varies by vehicle and powertrain type as well. For the three vehicles used in this
project, longitudinal acceleration commands, both positive and negative, were achieved through one of two
ways: 1) direct pedal override through analog voltage injection, or 2) ACC (Adaptive Cruise Control)
acceleration command override through a CAN (Control Area Network) bus man in the middle. A more
detailed explanation of these two approaches will be presented later, but they are mentioned here due to the
important difference as it relates to the vehicle mapping requirements for these two methods.

FY 2019 Annual Progress Report

The following Table 1.2.7.1 shows the lower level control capabilities of the three vehicles which will be
discussed in more details below:

Vehicle
Model

2017
Toyota
Prius

2014
Honda
Accord

PHEV

2013 Ford
Taurus

Table 1.2.7.1 Vehicle Lower Level Interface and Control Strategies

Powertrain
Type

Hybrid
Parallel

Hybrid
Serial

IC Engine

Acceleration
control
through ACC
& CAN Bust

Yes

N.A.

Yes; for
speed over
19 [mph];
max
acceleration
< 2[m/s"2]

Acceleration
control
through
accelerator
pedal
deflection

Yes; through a
direct analog
voltage; for
whole speed
range; and
acceleration
the driver can
achieve; the
deceleration is
limmited to >-
5.9[m/s"2]

Yes; through a
direct analog
voltage; for
whole speed
and
acceleration
ranges the
driver can
achieve

Yes; through a
direct anaog
voltage; for
whole speed
and
acceleration
ranges the
driver can
achieve

Deceleration
control
through ACC
& CAN Bus

Yes

N.A.

Yes ; for
spped over
19 [mph]
max
deceleration
>-3.1
[m/s"2]

Deceleration
control
through
brake pedal
deflection

N.A.

Yes; through
CAN; for
whole speed
and
deceleration
range the
driver can
achieve

N.A.

Comments

acceleration
control through
pedal may have

less delays

acceleration and
deceleration
controls through
accelerator/brake
pedals may have
less delay

Acceleration
control through
pedal may have

less delays
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For the direct pedal override method, the powertrain response map for longitudinal acceleration consists of a
surface plot of pedal position vs. vehicle acceleration vs. vehicle speed. This map is acquired from targeted
dynamometer testing covering a wide range of vehicle speed and acceleration points and provides a lookup
table for the required pedal position to achieve a desired acceleration from the vehicle. This method applies to
either accelerator or brake pedal for positive or negative acceleration, respectively.

For the ACC acceleration command override, the powertrain response mapping consists of an entirely different
plot. Since the ACC acceleration command is already in units of acceleration, the desired acceleration from the
CACC controller can be directly requested from the vehicle. However, it is necessary to know the acceleration
envelope of the vehicle with ACC acceleration control. More specifically, what is the minimum and maximum
acceleration capability through ACC acceleration override at any given vehicle speed. This map is obtained
through targeted dynamometer testing, aimed at covering the acceleration limits of the vehicle at a wide range
of vehicle speeds, and may be less than or equal to the absolute acceleration limits of the vehicle with driver
inputs to the pedals.

Finally, for both the direct pedal override and ACC acceleration command override, it is important to find the
powertrain response to a desired acceleration request. The response characteristics of interest include the time
to achieve a desired acceleration and the amount of overshoot and oscillation of the vehicle acceleration rate.
In the case where acceleration override for one vehicle is achievable through both direct pedal override and
ACC acceleration command override, the method with the more favorable powertrain response characteristics
would be selected for the CACC control development. All the mapping data applicable to each of the vehicles
selected for the CACC development is presented next.

Results

2017 Prius Prime

The 2017 Prius Prime selected for this project comes factory equipped with a full speed range capable ACC
system. This gives the ability to control positive and negative acceleration of the vehicle through ACC
acceleration command override for speeds between zero and maximum vehicle speed. Figure 1.2.7.2 shows the
acceleration envelope of the ACC acceleration override method compared to manual driving for the 2017 Prius
Prime.

The maximum positive acceleration using the ACC override method is equal to the absolute positive
acceleration limit of the vehicle. The maximum deceleration is limited to -5.9 m/s%, which is less than the
maximum possible deceleration of the vehicle, but it is sufficient for CACC system development in this
project.

122 Connected and Automated Vehicles



FY 2019 Annual Progress Report

The powertrain response using the ACC acceleration override method for positive and negative step changes in
acceleration command is shown in. As shown in, the ACC acceleration override method has a significant time
delay to achieve the desired acceleration as well as a large overshoot and prolonged oscillation. This response
could be compared to the direct pedal override method for positive acceleration to determine which method
would be more favorable for a CACC controller. Unfortunately, it is not possible to do a direct pedal override
for the braking system on this vehicle, and the ACC deceleration override is the only method that could be
used for brake control of this vehicle.

2017 Toyota Prius Prime Acceleration Envelope
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Figure 1.2.7.2 ACC override acceleration envelope for Figure 1.2.7.3 Powertrain response to ACC acceleration
2017 Prius Prime override for 2017 Prius Prime

Since it is possible to use a direct pedal override for the accelerator pedal of the 2017 Prius Prime,
dynamometer testing covering a wide range of vehicle speeds and acceleration rates was performed to create a
map of accelerator pedal position as a function of acceleration and vehicle speed. Figure 1.2.7.4 shows a 3D
plot of the accelerator pedal map for the 2017 Prius Prime.

It should be noted that in addition to positive acceleration of the vehicle, some negative acceleration can also
be controlled using the accelerator pedal override. At high vehicle speeds, the road-load of the vehicle is so
high that a low accelerator pedal command results in vehicle deceleration. This is the braking effect of the
power regeneration of the alternator.
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Finally, the powertrain response to an acceleration request through a direct pedal override is shown in Figure 1.2.7.5.
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. Figure 1.2.7.5 Powertrain response to accelerator pedal
Figure 1.2.7.4 Accelerator pedal map for 2017 Toyota override on 2017 Toyota Prius Prime
Prius Prime

The direct pedal override response plot is slightly different from the ACC acceleration override plot because
instead of step change in acceleration command, it is showing the powertrain response to a step change in
pedal command. Since the direct pedal override method does not directly request a desired acceleration from
the vehicle, the actual vehicle acceleration is compared to an estimate of the commanded vehicle acceleration
based on the accelerator pedal map in Figure 1.2.7.4. Based on the comparison of actual and estimated vehicle
acceleration, the direct pedal override method appears to have a lower powertrain response time and almost no
overshoot or oscillation as compared to the ACC acceleration override. Therefore, a direct pedal override is
better suited for positive acceleration CACC control of the 2017 Prius Prime, but the ACC acceleration
override is the only possible method for negative acceleration control instead of going through the brake pedal.

2013 Ford Taurus

The 2013 Ford Taurus selected for this project comes with a factory equipped n ACC system for speed above
19 mph. This gives the ability to control positive and negative acceleration of the vehicle through ACC
acceleration command override for speeds above 19 mph only. Figure 1.2.7.6 shows the acceleration envelope
of the ACC acceleration override method for the 2013 Ford Taurus.

The maximum positive acceleration of this method is 2 m/s?, which is less than the absolute positive
acceleration limit of the vehicle. The maximum deceleration is limit —3.1 m/s?, which is also less than the
maximum deceleration of the vehicle but is deemed sufficient for this project.

The powertrain response using the ACC acceleration override method is shown in Figure 1.2.7.7 for positive
and negative step changes in acceleration command.
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2013 Ford Taurus Acceleration Envelope
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Figure 1.2.7.7 Powertrain response to ACC
acceleration override for 2013 Ford Taurus

The ACC acceleration override method for the 2013 Ford Taurus has a significant time delay to achieve the
desired acceleration for both positive and negative acceleration commands. While there is no overshoot for
positive acceleration commands, there is a significant overshoot for deceleration commands. Since a direct
accelerator pedal override method is possible, the positive acceleration powertrain response could be compared
to the direct pedal override method for the accelerator pedal. In addition to a possible difference in powertrain
response, the direct pedal override would provide full vehicle acceleration capability. Unfortunately, as is the
case with the Toyota Prius, it is not possible to do a direct pedal override for the braking system on the Ford

Taurus.

As with the Toyota Prius, dynamometer tests covering a wide range of vehicle speeds and acceleration rates
were performed to create a map of accelerator pedal position as a function of acceleration and vehicle speed
for the 2013 Ford Taurus. Figure 1.2.7.8 shows the accelerator pedal map for the 2013 Ford Taurus.
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Figure 1.2.7.9 Powertrain response to accelerator pedal

Figure 1.2.7.8 Accelerator pedal map for 2013 Ford X
override on 2013 Ford Taurus

Taurus

Unlike that ACC acceleration override, the direct pedal override of the accelerator pedal can provide the
absolute maximum acceleration at any vehicle speed.

Finally, the powertrain response of the direct accelerator pedal override for the 2013 Ford Taurus is shown in
Figure 1.2.7.9.

The direct pedal override response plot shows the powertrain response to a step change in accelerator pedal
command. The actual vehicle acceleration is compared to an estimate of the commanded vehicle acceleration
based on the accelerator pedal map in Figure 1.2.7.8. Based on the comparison of actual and estimated vehicle
acceleration, the direct pedal override method appears to have a lower powertrain response time as compared
to the ACC acceleration override. Taking into consideration the limited positive acceleration of the ACC
acceleration override method, the direct pedal override appears to be better suited for positive acceleration
CACC control of the 2013 Ford Taurus. Unfortunately, a pedal override method is not possible for the braking
system on the Ford Taurus and the ACC acceleration override is the only possible method for negative

acceleration control.

2014 Honda Accord PHEV

The 2014 Honda Accord PHEV selected for this project comes factory equipped with an ACC system operable
above 19 mph. However, unlike the Toyota Prius and Ford Taurus, the ACC system on the Honda Accord does
not have an ACC acceleration command which can be overridden. Instead, the ACC system on the Honda
Accord uses direct pedal overrides to control both positive and negative acceleration of the vehicle. As a result,
the only method of acceleration control on the Honda Accord is through direct accelerator and brake pedal
overrides. The accelerator pedal override is done through a direct analog voltage injection similar to that of the
Toyota Prius and Ford Taurus, while the brake pedal override is done through a CAN bus man in the middle.
This gives the ability to control positive and negative acceleration through the full vehicle speed range.

Targeted dynamometer tests covering a wide range of vehicle speeds and acceleration rates were performed to
create a map of accelerator pedal position as a function of acceleration and vehicle speed for the 2014 Honda
Accord. Figure 1.2.7.10 shows the accelerator pedal map for the 2014 Honda Accord.
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Figure 1.2.7.11 Powertrain response to accelerator
pedal override on 2014 Honda Accord

The direct pedal override of the accelerator pedal can provide absolute maximum vehicle acceleration at any

vehicle speed. The powertrain response to the direct accelerato
shown in Figure .2.7.11.

r pedal override for the 2014 Honda Accord is

The actual vehicle acceleration for a step change in accelerator pedal command is compared to the estimated
vehicle acceleration based on the accelerator pedal map in Figure 1.2.7.10. The direct accelerator pedal
override has a relatively low powertrain response time with some overshoot.

Unlike the Toyota Prius and Ford Taurus, a pedal override method for the braking system was possible on the
Honda Accord. The brake pedal override was achieved through a man in the middle override of the CAN bus

similar to the acceleration command override on the Toyota Pr

ius and Ford Taurus. This enabled a brake pedal

map similar to the accelerator pedal map to be created. Figure 1.2.7.12 shows the brake pedal map for the 2014

Honda Accord.
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The brake pedal override on the Honda Accord can provide a higher deceleration rate than both the Toyota
Prius and Ford Taurus ACC acceleration override methods for braking, up to the absolute maximum vehicle
deceleration.

Finally, the brake system response to the brake pedal override for the 2014 Honda Accord is shown in Figure
1.2.7.13.

The estimated vehicle deceleration for a step change in brake pedal command is compared to the estimated
vehicle deceleration based on the brake pedal map in Figure 1.2.7.12. The brake system response with brake
pedal override on the 2014 Honda Accords shows very fast response with no overshoot or oscillations.

ACC Acceleration Command Override

The ACC acceleration command override is accomplished through a CAN bus man in the middle (MiM)
implemented between a vehicle’s ACC electronic control unit (ECU), responsible for the stock ACC control,
and the Central Gateway Module (CGM), which distributes the appropriate CAN messages to the rest of the
vehicle dynamic controllers. The CAN message that contains the acceleration/deceleration command from the
ACC ECU is intercepted by the MiM and overridden with the desired output from a custom longitudinal
controller, as shown in Figure 1.2.7.14

o Powertrain
Original signals | 1 Original signals vehicle
- T+ Gateway e Gateway TECCH - Control
- | [ Module
1 s Override 1
Acceleration | ! Acceleration
Command Command S
I ] DC Voltage | —
Original signals | Gateway | Original signals L (Signal 1)
DC Voltage
Acceleration Command MiM (Signal 2)
Figure 1.2.7.14 ACC acceleration command override Figure 1.2.7.15 Pedal override DC voltage injection
MiM diagram diagram

The MiM approach shown in Figure 1.2.7.14 applies to the ACC acceleration command override of both the
2017 Prius Prime and 2013 Ford Taurus. It is also very similar to the brake pedal override of the 2014 Honda
Accord, with the only difference being that instead of an override of an acceleration command message, the
MiM overrides a brake pedal command message.

Direct Pedal Override

The direct pedal override of the accelerator pedal on all three vehicles is accomplished with an analog voltage
injection on the accelerator pedal position sensor. The accelerator pedal position sensor consists of either a pair
of potentiometer or Hall Effect sensors connected directly to the vehicle’s powertrain control module (PCM).
A pair of DC analog voltages corresponding to a desired pedal position are injected directly onto the two signal
wires going to the vehicle’s PCM as shown in Figure 1.2.7.15.

The DC voltage to pedal position follows a linear relationship for all three cars with a slightly different offset
and slope value for each one. The accelerator pedal position signal (APP1 and APP2) are also related
according to: APP1 =2*(APP2).

Preliminary Test Results for Toyota Prius

The following plots shows the preliminary test results of the feedback control for speed tracking in two
approaches:

e Speed tracking using the torque mapping developed from the dynamometer test

e Speed tracking directly using the ACC command from the upper level control
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By comparing those two approaches, it can be observed that both approaches have obvious overshoot at the
changes from acceleration to constant speed. This may be due to the induced delay of the ACC control
actuation. Therefore, the project team is seeking another control approach by using acceleration pedal
deflection for control actuation instead of using the internal ACC actuation.
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Figure 1.2.7.16 Speed tracking using the torque mapping developed from the dynamometer test: upper - reference speed
(blue) and measured speed (red); lower: speed tracking error, acceleration control command, and drive mode (O-manual; 2-
automatic control)
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Figure 1.2.7.17 Speed tracking directly using the ACC command from the upper level control: upper - reference speed
(blue) and measured speed (red); lower: speed tracking error, acceleration control command, and drive mode (0O-manual; 2-

automatic control)
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Conclusions
The project team has accomplished the following during FY'19:

ANL:
e Developed lower level physical control interface actuations for 3 vehicles: Toyota Prius, Honda Accord
and Ford Torus

e Developed look-up table (speed, acceleration and pedal defection) for control actuation of all three
vehicles

e Developed brake pedal deflection look-up table for Honda Accord
e Shipped all the vehicles to Berkeley around September 20", 2019

LBNL:

e Built up PC-104 computer and installed real-time operating systems

e Purchased and developed DSRC and developing communication packet for V2V communications
e Developed a generic Cooperative Adaptive Cruise Control (CACC) strategy for all three vehicles
e Preliminarily implemented the CACC control on Toyota Prius and tested

Tasks to be Accomplished by ANL Team
e To purchase and develop the interface capability of the 4™ vehicle (EV)

e To develop torque mapping for vehicle acceleration control

e To develop torque mapping for deceleration control

e To work with LBNL for PC-104 computer interface from QNX

e To accomplish the vehicle transfer to LBNL for insurance etc. the project

Tasks to be Accomplished by LBNL Team
e To accomplish the vehicle transfer to LBNL for the project from ANL for insurance etc.

o Install PC-104 control computers on vehicles
e Install DSRC and developing communication packet

e Developing 2nd and 3rd car by building interface of PC-104 with the 2™ and 3" cars (Accord and
Taurus) with the help from ANL

e Low speed of 3-car CACC
e Preliminary field tests and control tuning
e High speed test and control tuning for performance improvement of CACC.

The project team will use FY'19 funding to accomplish the proposed work.
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