

Enabling Low-Temperature Plasma (LTP) Ignition Technologies for Multi-Mode Engines through the Development of a Validated High-Fidelity LTP Model for Predictive Simulation Tools

Project ID: ace150

PI: Nicholas Tsolas - Auburn University

Co-Pls: Fabrizio Bisetti - UT-Austin, Isaac Ekoto - Sandia NL, Riccardo Scarcelli - Argonne NL

2020 DOE Vehicle Technologies Office Annual Merit Review | June 2, 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

TIMELINE:

Project Start: January 2020

• Project End: December 2022

Complete: >5%

PARTNERS:

- University of Texas at Austin
- Sandia National Laboratories
- Argonne National Laboratories

BUDGET:

• Total project funding: \$1.5M / 3yrs

Academic cost share: \$360K

National Labs: \$300K

BARRIERS*:

- Robust lean-burn and EGR-diluted combustion technology and controls needed to safeguard efficiency gains of future multi-mode engines
- New ignition systems need to be developed LTP igniters
- Lack of predictive simulations tools for LTP prevents full adoption of LTP into future engine designs
- Significant deficiencies in current simulations capabilities are:
 - Lack of validated plasma-combustion kinetics of fuels
 - ii. Lack of validated computational methods for unsteady, 3D LTP ignition

^{*}https://www.energy.gov/sites/prod/files/2018/03/f49/ACEC_TT_Roadmap_2018.pdf

Relevance

IMPACT:

- Development of a validated chemical kinetics model and benchmarked exascale software for high-fidelity simulation of LTP ignition of hydrocarbon/air fuels
 - Improve the predicative capability of current LTP sub-models for multi-mode engine simulations
 - Enable advanced gasoline engines to operate across the entire load-speed map, with lower emissions and improved fueleconomy
 - Advance the development of new LTP ignition technologies to extend SACI lean and/or EGR dilution-limits at boosted conditions
 - Facilitate near/long CO-OPTIMA goals to develop engines that run more efficiently on affordable, scalable, and sustainable fuels

OBJECTIVES:

- **1. (AUBURN)** Development of experimentally validated LTP-specific kinetic mechanism for relevant fuels; iso-octane, ethanol, and EGR blends
- 2. (UT-AUSTIN) Development of a validated and benchmarked massively-parallel, exascale, high-fidelity solver for the simulation of LTP discharges/ignition of hydrocarbon/air mixtures in complex geometries
- **3. (SANDIA)** Experimental database of LTP ignitions of blended mixtures with isooctane/ethanol/EGR/air at conditions relevant to the Co-Optima initiative for benchmarking and validating high-fidelity solvers and kinetic models
- **4.** (ARGONNE) Appraisal of the performance and accuracy of existing LTP commercial software tools against the high-fidelity solver and plasma/combustion kinetics models and identification of areas of improvement and directions for future development

LTP Enabled Multi-Mode SACI

Overall Technical Approach

LTP Kinetic Model Development via Plasma Flow Reactor

- Custom-built plasma flow reactor with nanosecond-duration high-voltage pulse perturbation for LTP kinetic studies
- Offline GC/MS for ex-situ diagnostics for species identification/quantification
- OD plasma kinetic model for LTP-specific kinetic mechanism development

Measuring LTP Ignition Characteristics via Ignition Cell

- Purpose built ignition test vessel for LTP ignition studies
- · Experimental measurements/diagnostics include:
 - · Pressure rise calorimetry bulk energy deposition
 - High-Speed Schlieren and OH* measurements flame propagation measurements
 - Direct measurements of active radicals O* and O3

- Exascale solver build on AMReX (Lawrence Berkeley National Lab)
 - · Hierarchy of meshes and resolution near electrodes
 - · Efficient temporal integration
 - Ready for high-performance computing on massively-parallel DOE computers
- Development of reduced skeletal mechanisms for LTP ignition of hydrocarbon fuels

- Commercial solver use: VizGlow (Esgee Technologies)
- Validation carried out by looking at:
 - Discharge regime (glow or spark)
 - Bulk gas temperature estimates and/or active species [O, O₃] direct measurements
 - Impact on ignition described by CFD combustion tool (CONVERGE CFD) and validated against Schlieren from SNL

Development of LTP Ignition Exascale-Ready AMR Software

Appraising Existing Commercial LTP Modeling Software

Technical Accomplishments (Auburn)

Parametric Modeling Studies for Thermal Mechanism and 0D Plasma Model

- Several iso-octane mechanisms currently being assessed, including detailed, reduced and PRFs - selection based on agreement with experimental data, and computational practicality
- High-pressure LTC kinetics provides an indication of potential reaction pathways for LTP chemistry

0.04

Time [s]

0.02

1 kV

0.08

0.1

0.06

- Preliminary N2/O2 simulation preformed to ascertain experimental conditions
- At 1 atm pressure, plasma kinetics by, O-atom and O* excited kinetics will dominated

Date	Task/ Milestone	Description	Status
FY21 Q1	T1.1	Perform LTP pyrolysis and oxidation experiments on iso-octane using the PFR facility	On Track
FY20 Q1	T1.3	Appraise and select thermal mechanisms for iso-octane combustion against experimental data.	Delayed Q3
FY21 Q1	T1.4	Use PAC kinetic model to develop plasma/combustion reaction mechanism for iso-octane against experimental data.	On Track
FY20 Q1	M.1	The selection of the iso-octane thermal mechanism is complete. Selection is verified by comparing experimental pyrolysis and oxidation data to numerical results with the least error.	Delayed Q3

Technical Accomplishments (UT Austin)

Preliminary Benchmarking with LTP Reduced Ethylene Mechanism

- Extension of DGREP to plasma kinetics with P. Pepiot (Cornell U)
- Ethylene/air plasma/combustion kinetics
- Reduction from 140 to 50 species

Date	Task/ Milestone	Description	Status
FY20 Q3	T1.5	Extend available DGREP framework to DRGEP-2T to address plasma kinetics	On Track
FY20 Q4	T1.6	Formulation of a skeletal mechanism for ethylene/air plasma/combustion via the DGREP-2T reduction methodology.	On Track
FY20 Q3	T1.8	Assembly of mathematical models and closures.	On Track
FY20 Q3	M.3	Software for skeletal reduction of detailed plasma/combustion kinetics mechanism is complete. Software is distributed with validation suite.	On Track

Technical Accomplishments (SNL)

Parametric LTP Ignition Mapping – Initial Propane/Air Studies

φ	1
Fuel	Propane
# of pulses, N	2
Dwell, δ	300 μs
V_{peak}	12.3 kV
Р	1.3 bar

- Pin-to-Pin NRPD ignition points identified for different gap sizes and pulse strategies
- Lean ignition limits were extended due to a combination of larger ignition volumes and reduced electrode heat losses due to the larger gaps

Date	Task/ Milestone	Description	Status
FY20 Q2	T1.10	Ignition limit mapping - parametric studies ethylene/air	Delayed Q3
FY20 Q2	T1.11	Qualitative O-atom luminosity measurements ethylene/air	Delayed Q3
FY20 Q2	T1.12	LTP discharge calorimetry measurements ethylene/air	Delayed Q3
FY20 Q2	M.2	LTP ignition experiments for Phase 1 in static cell and ignition vessel are complete	Delayed Q3
FY21 Q4	T1.13	Flame growth rate measurements - ethylene/air	On Track
FY21 Q4	T1.14	OH* imaging for flame kernel distribution - ethylene/air	On Track

Technical Accomplishments (ANL)

Boundaries and Kinetics Identified for LTP Simulations using VizGlow

Boundary Conditions:

- Improved circuit calculations take into account for real components and transmission line losses.
- · Leveraged collaboration:
 - Sandia National Laboratories (PACE program)
 - Transient Plasma Systems (HPC4Mfg program)
- Raw Voltage/Current data from Sandia experiments was post-processed to obtain realistic values of the connection Voltage

Plasma kinetics

- Typical VizGlow LTP discharge simulations carried out in O₂/N₂ (18 species, 64 reactions)
- Reduced iso-octane/air/diluent mechanism identified (≈50 species, ≈300 reactions) that could be run in VizGlow
- Reduced mechanism for ethylene/air (54 species, 236 reactions) provided by UT/Cornell (Bellemans, Pepiot, Bisetti, et al., PCI 2020)

Date	Task/ Milestone	Description	Status
FY21 Q2	T1.15	LTP discharge simulations in ethylene/air	On Track

Summary

IMPACT:

 Advance predictive modeling capabilities in support of the development of LTP ignition technologies to enable novel multimode engine concepts

APPROACH:

· Multi-lab team, combing prior experience of academia and leveraging technical expertise of national labs

TECHNICAL ACCOMPLISHMENTS:

- Modeling initiatives have started to evaluate selection of thermal mechanisms and parametric studies of plasma kinetics in air using 0D model

 experimental studies to compliment models studies DELAYED
- · Ethylene kinetic mechanism reduced for high-fidelity modeling
- Parametric LTP ignition studies have started for propane/air continuation of experimental studies to have been DELAYED
- Boundary conditions and potential kinetic mechanism identified to appraise performance of LTP ignition simulation using commercial VizGlow software

PROJECT STATUS:

· All modeling initiatives are on track and continuing, experimental initiative delayed and set to resume

Technical Back-Up Slides

Technical Back-Up Slide (SNL)

Optical Ignition Calorimeter

Time (ns)

3000

Schlieren Imaging

- · Discharge volume
- Channel temperature (with calorimetry)
- · Flame kernel growth

Experimental Conditions

- Propane/air
- $\phi = 0.52 1.0$
- EGR 0 34%
- Voltage 8 14.1 kV
- Pressure 1.3 4 bar

Pin-to-Pin (P2P)

- Strong electric fields at electrode tips
- Concentrated pulse energy and wide gap lowers flame kernel heat loss
- · Ignition primarily thermally driven?

Technical Back-Up Slide (ANL)

Pin-to-Pin (P2P) case setup in VizGlow

SETUP VALIDATED AGAINST EXPERIMENTAL DATA FROM SNL

- 2-D axis-symmetric (preferred) or 2-D planar simulations.
- Computational time-step = $1x10^{-14} 1x10^{-12}$
- Pressure range = 1-5 bar, Temperature = 343 K
- Voltage range = 5-30 kV, pulse repetition rate 5-20 kHz
- Gap size = 3-6 mm
- Minimum mesh size = 2-10 mm, 40,000-400,000 total cell count.
- Coarser mesh case run on ≈ 100 CPUs. Finer meshes scale up to ≈ 500 CPUs
- Boundary conditions needed: applied voltage profile
- Model calibration through Electron collision frequency to match experiments
- Extensive study on real electrode geometry effects on streamer discharge
- Flow solver coupled with Poisson equations