Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

2011 Directions in Engine-Efficiency and Emissions Research (DEER)

October 3-6, 2011

Presented By: <u>Kent Johnson</u> Co-Authors: Thomas Durbin, J. Wayne Miller

University of California, Riverside Bourns College of Engineering Center for Environmental Research and Technology

- Motivation, background, methods
- Results and comparisons to previous studies
- Discuss formation mechanism and root cause
- Impact and discussions

Motivation and Background

- Alternate strategies exist to meet 2010 heavy duty emission standards such as natural gas (NG) and propane fuels
- University of Denver showed high ammonia NH₃ (1500 ppm) emissions from NG vehicles (Gary Bishop, CRC 2009)
- Ammonia (NH₃) can form ammonium nitrate particulate matter (PM_{2.5}) in the atmosphere
- What is the current in-use impact of NH₃ emissions between heavy duty fuel applications?

Test Methods: Vehicles

Туре	Count	Mfg/Model	Disp	MY	Fuel	A/F	ATS	ID
School Bus	5	GM/8CLFH08	8.1	2008	LPG	SI stoich	TWC	LPG_st_TWC
Box Truck	¦ 1	GM/7CLFH08	8.1	2007	LPG	SI stoich	TWC	LPG_st_TWC
Shuttle Bus	2	GM/BCLFE06	6.0	2009	LPG	SI stoich	TWC	LPG_st_TWC
Transit Bus	1	CUM/ISL-G280	8.9	2009	CNG	SI stoich	TWC	CNG_st_TWC
Refuse Truck	1	CUM/CG-250	8.3	2001	CNG	SI lean	OC	CNG_In_OC
Transit Bus	¦ 1	JD/6081H	8.1	2003	CNG	SI lean	ŌĊ	CNG_In_OC
Class 8	2	CUM/ISL-G320	8.9	2008	LNG	SI stoich	TWC	LNG_st_TWC
Yard Tractor	2	CUM/CG-250	8.3	2005	LNG	SI lean	OC	LNG_In_OC
Class 8	<u> 1</u>	CUM/ISX450	15	2008	Diesel	CI	DOC/DPF	D_DPF
Class 8	<u> </u>	DDC/S60	15	1998	Diesel	CI	CRT/SCR	D_CRT/SCR

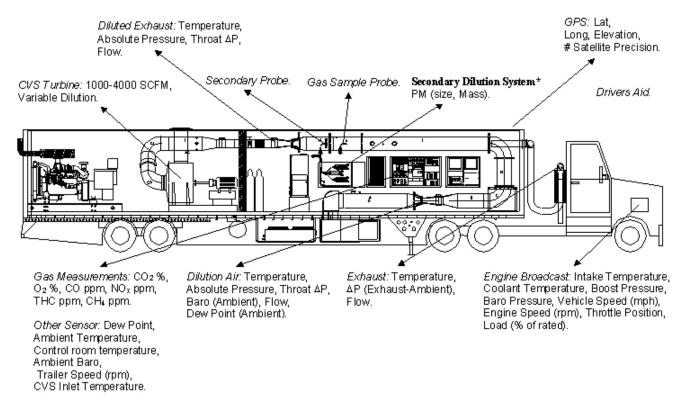
Disp - displacement liters, MY - model year, A/F - air-to-fuel ratio type, ATS - after treatment system

LPG - liquid propane gas, CNG - compressed natural gas, LNG - liquid natural gas

SI stoich - spark ignition stoichiometric combustion, SI lean - lean combustion, CI - compression ignition

TWC - three way catalyst, OC - oxidation catalyst, DPF/SCR - diesel particulate filter / selective catalytic reduction

Test Methods: Test Repeatability Controlled with UCR's Chassis Dyno


- Performance
 - 5,000 lb 0-15 mph
 - 600 hp 45-80 mph
 - 200 hp 15 mph
- Acceleration 6 mph/sec
- Inertia Simulation
 - 10 lb increments
 - 10,000 lb 80,000 lb range
 - 45,000 lb base inertia
- Speed accuracy +/- 0.01 mph
- Acceleration accuracy +/- 0.02 mph/sec
- Response time 44 to 100 ms

(durbin 2010 CRC)

College of Engineering- Center for Environmental Research & Technology

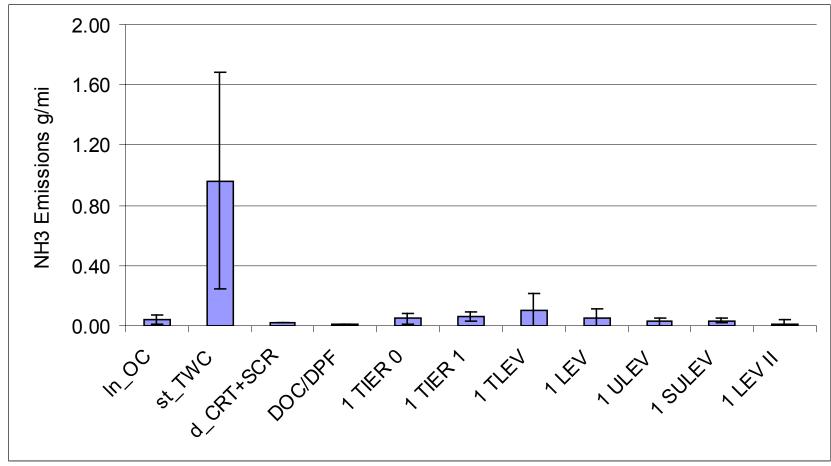
Test Methods: Laboratory Measurements Used

- Mobile emissions laboratory (MEL) established (CO, CO2, THC, CH4, NMHC, PM2.5, NOx) (Cocker 2004 Part I ES&T, Johnson AE 2009, and Johnson ES&T 2010)
- NH₃: Integrated tunable diode laser (TDL) spectroscopy (Johnson 2009 CRC)
- Carbonyls: DNPH (Cocker 2004 Part II ES&T)
- Particle size distribution: SMPS (Shaw 2005 ES&T)

UCR College of Engineering- Center for Environmental Research & Technology

- Motivation, background, methods
- Results and comparisons to previous studies
- Discuss formation mechanism and root cause
- Impact and discussions

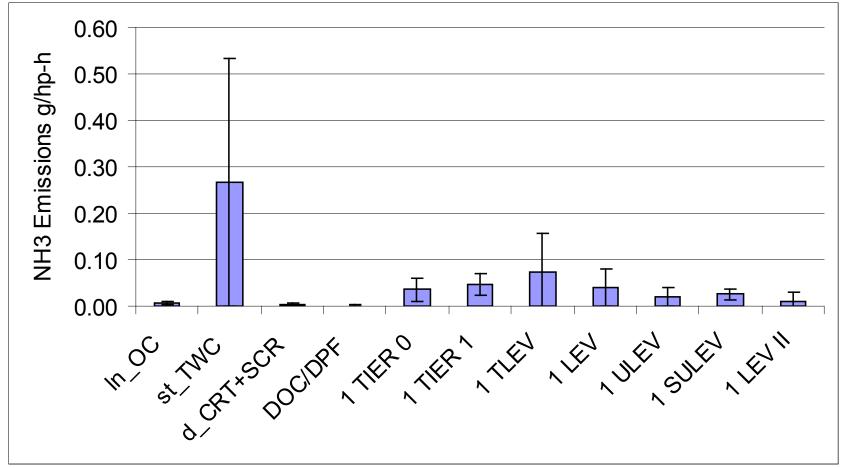
Results Averaged over Cycles and Vehicles


ID ¹	Emissions g/hp-h					
n/a	NMHC	CO	NOx	NH3	PM	NH3
NG_In_OC	0.002	0.113	9.530	0.007	0.001	2.4
LPG_In_OC	0.004	0.029	3.932	0.007	0.001	2.0
NG_st_TWC	0.001	4.042	0.051	0.397	0.001	151.6
LPG_st_TWC	0.001	1.462	0.051	0.135	0.004	97.1
CRT+SCR	0.034	0.261	1.488	0.005	0.004	1.2
DOC/DPF	0.015	0.030	1.590	0.002	0.001	0.5

¹ refer to previous table for description of ID's

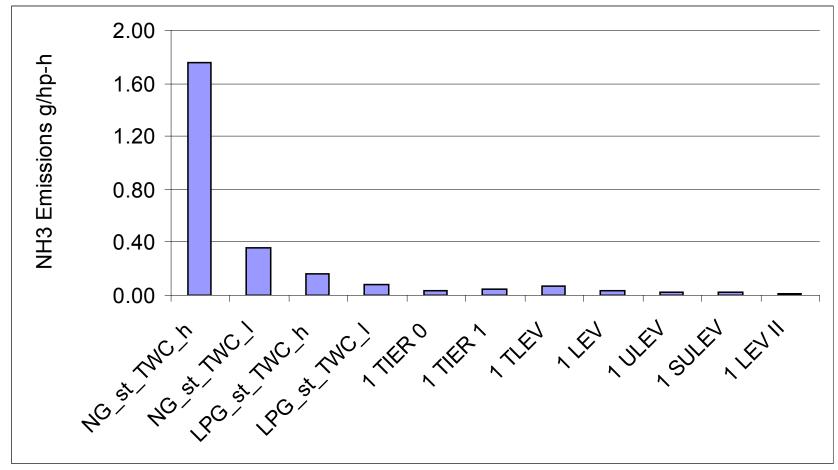
² draft data

- Each data row represents the average of all vehicles and cycles (UDDS, CBD and Cruise) to highlight ATS affects
- Differences due to vehicles was relatively low


Heavy Duty > Light Duty NH₃ Emissions on Mile Basis

¹ light duty data souce from Livingston et al 2009 AE

Heavy Duty NH₃ Emissions Similar to LD on g/hp-h basis



¹ light duty data souce from Livingston et al 2009 AE

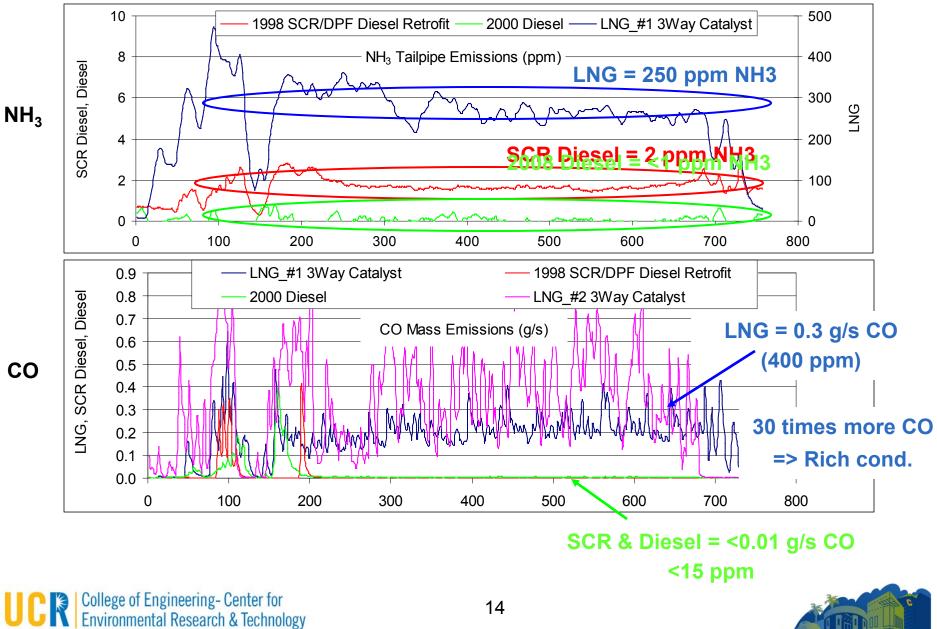
² light duty brake specific data estimated from FTP length, time and nominal 30 hp load

Heavy Duty NG NH₃ Emissions is Higher than LPG

¹ light duty data souce from Livingston et al 2009 AE

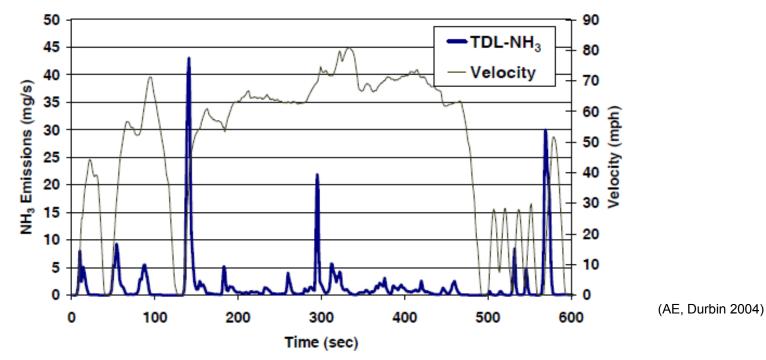
² light duty brake specific data estimated from FTP length, time and nominal 30 hp load

- Motivation, background, methods
- Results and comparisons to previous studies
- Discuss formation mechanism and root cause
- Impact and discussions


Why is NH₃ High for the Alt Fueled Vehicles?

• Research suggest that NH₃ is formed from the water-gas shift reaction (Bradow, 1977 SAE and Cadle et al 1979 SAE)

 $CO + H_2O \rightarrow CO_2 + H_2$ $2NO + 2CO \rightarrow 2NH_3 + 2CO_2$ $2NO + 5H_2 \rightarrow 2NH_3 + 2H_2O$

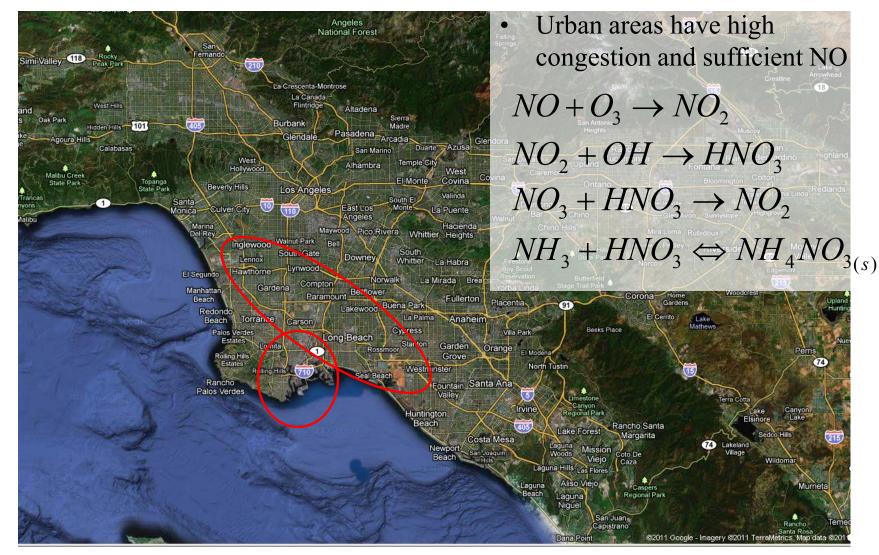

- Several researchers reported that NH₃ emissions were present on light duty gasoline vehicles equipped with TWC under rich conditions (Durbin et al, 2000 ES&T and Huai et al, 2003 ES&T)
- GM research suggested controlling NO_x emissions using NH_3 formation over the catalyst (Viola et al, 2010 DEER)

NG Vehicles Show High NH₃ and CO During Cruise

14

Light Duty High NH₃ Spikes Occurs at Tip-In

- NH₃ emissions in real time show issue occurs during transients accels (US06 cycle 5 times > than FTP: ULEV light-duty gasoline truck)
- Once the vehicle A/F is controlled NH_3 is minimal
- Advanced air-fuel ratio controls for SULEV's show minimal NH₃ spikes (Kitagawa et al, 2000)



- Motivation, background, methods
- Results and comparisons to previous studies
- Discuss formation mechanism and root cause
- Impact and discussions

Why Does it Matter to Have High NH₃ Emissions?

Conclusions

- NG and propane vehicles, with SI stoichiometric control, can produce high NH₃ emissions over a TWC
- Heavy duty NG NH₃ emissions are significantly higher on a g/mi basis, but closer on a g/hp-h basis compared to light duty vehicles
- Propane vehicles produced less NH₃ emissions than NG, but still slightly more than LD vehicles
- High NH₃ release is associated with high CO

Future Work

Engine/Technology		Total			
	Transit	Sch. Bus	Refuse	Goods Movement	Test
I. 8.9L 0.2g Natural gas engine with 3-way cat.	1	-	1	3	11
II. 15L 0.8g HPDI engine with EGR and DPF				3	6
III. 15L 0.2g HPDI engine with EGR and SCR/DPF				2	4
IV. Diesel engine at 1.2 g NOx		-	1	3	10
V. Propane and diesel school bus	-	2	-	-	2
VI. Diesel engine above 0.2 g NOx w/o SCR	-	-	2	2	12
VII. Diesel engine at or below 0.2 g NOx w/SCR	-	-	2	3	14
VII. Natural gas engine w/3-way catalyst + AFD	1*		1*	1*	7
Total	1	2	6	16	66

- WVU and UCR working together
- 3 more propane and 6 more diesel added to matrix
- Total vehicles 34

