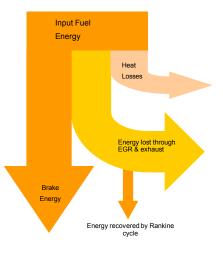
VOLVO


Development of an ORC system to improve HD truck fuel efficiency

DEER 2011 CONFERENCE

Presenter

Principal Investigators

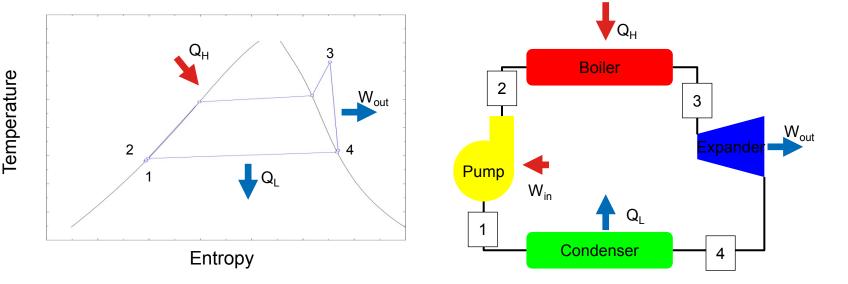
Tom Howell, Ricardo Inc John Gibble, Mack Trucks Inc Chai Tun, Mack Trucks Inc

DELIVERING VALUE THROUGH INNOVATION & TECHNOLOGY www

www.ricardo.com

RICARDO

Contents


- Background and Objectives
- Project Outline
- Concept Investigation
- Design and Simulation
- Procure and Build
- Testing & Controls Development
- Project Status
- Lessons Learnt

Organic Rankine Cycle Background

Tom

- The Organic Rankine Cycle (ORC) is one potential technology used to generate power from low temperature heat sources
 - Bottoming cycle from combustion engines
- ORC's are particularly suited to class 8 trucks due to:
 - High fuel consumption enabling return on investment of ORC hardware
 - Consistent periods of high duty cycle
 - Significant use of EGR for control of criteria emissions
 - Challenge rejecting waste heat through vehicle cooling pack

m Howell	DEER 2011	05 Oct 2011	RD.11/353805.1	© Ricardo plc 2011

Organic Rankine Cycle Objectives

- Key objectives for a successful ORC system for HD truck are:
 - Good control of emissions critical characteristics
 - Environmental responsibility and operational safety
 - Improve overall fuel economy by maximizing energy recovery from the ORC in key areas of the engine operating map.
 - Control of heat rejection required through the condenser to avoid increased aerodynamic drag or powertrain performance degradation

Organic Rankine Cycle Project Outline

Concept Investigation	Design and Simulation	Procure and build	Testing & controls development
 Objective: Establish concept ORC system Steady state simulation High level assessment of fuel economy benefits 	 Objective: Detailed design & simulation of ORC Transient simulation Control strategy development Detailed design 	 Objective: Procure & build system into test cell with engine Procure, build, instrument, install Implement controls into controller 	 Objective: Development of system and controls system Performance testing Control strategy development Calibration & testing
Temperature	MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Part Samples Load Target Marce Samples Samples Samples Marce Samples Samples Samples Samples Marce Samples Samples Samples </td <td>ECR targe ratius and workingfluid pressure ECR targe ratius and workingfluid pressure The state of the pressure The state of the pressure The state of the pressure The state of the state of the pressure The state of the state of the</td>	ECR targe ratius and workingfluid pressure ECR targe ratius and workingfluid pressure The state of the pressure The state of the pressure The state of the pressure The state of the state of the pressure The state of the

Tom Howell

Entropy

05 Oct 2011

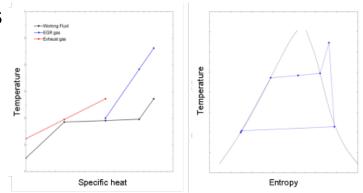
Internal April 1977

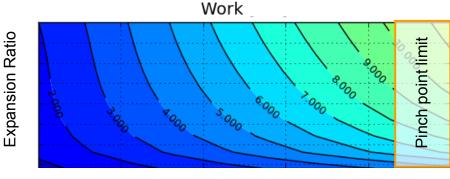
The state

OA Daniel Dataset Taxi

Name of Cost of Street

In gines perating conditions and expander torque

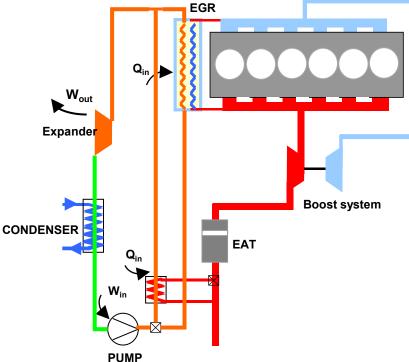

© Ricardo plc 2011 5


Concept Investigation ORC Steady State Simulation

RICARDO

VOLVO

- Initial component sizing and efficiency investigations can be performed using basic thermodynamic equations with a solver such as EES®
- Ricardo approach includes simple models of heat exchangers to investigate pinch points within the 2 phase regime
 - Simulation of 1st and 2nd law of thermodynamics
- Investigation of multiple parameters performed rapidly using neural net
 - Working fluid
 - System pressures and temps
 - Flow rate
 - Operating point
 - Component size
 - System layout

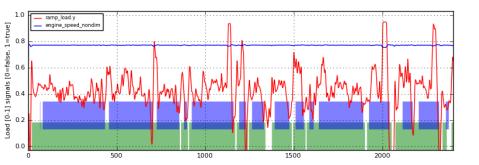


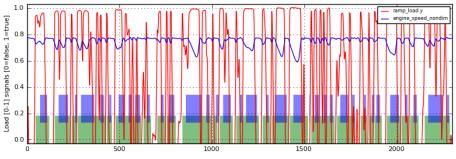
Mass Flow (kg/sec)

Concept Investigation Selected Concept

- Heat input from EGR and exhaust post exhaust after-treatment system (EATS)
- Heat sources in parallel
- Water / ethanol or pure ethanol working fluid
- Positive displacement expander with mechanical power delivery to drivetrain
- Indirect condenser (LT cooling circuit)

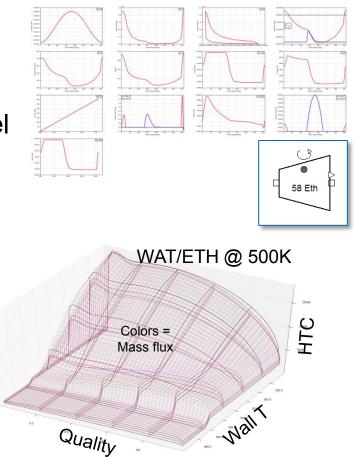
Heat Sources	Working Fluid	Layout	Expander	Cold Sink
EGR	Water	Option 1	Piston	LT circuit
Exh pre TC	Acetone	Option 3	Scroll	Air
Exh pre EATS		Option 4	Turbine	
Exh post EATS	R152a	Option 5		
Charge air cooler	Ethanol	Option 6		
Coolant	Water ammonia			
	R245fa			
	Water Ethanol			

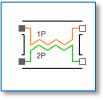



Tom Howell	DEER 2011	05 Oct 2011	RD.11/353805.1	© Ricardo plc 2011 7

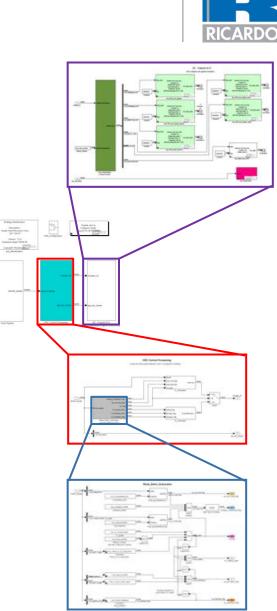
Design and Simulation Detailed Simulation Overview

- Detailed simulation was performed to provide:
 - Fuel economy prediction during transient conditions
 - Establish control strategy for ORC system
- Ricardo wrote the ORC model using libraries in OpenModelica
 - Able to edit and run in Dymola®
 - Simulation faster than realtime enabled multiple iterations
- Simulation run over multiple drive cycles
 - Control strategy development and virtual calibration of control system
 - Assess vehicle implications (heat rejection, EGR temperature control)



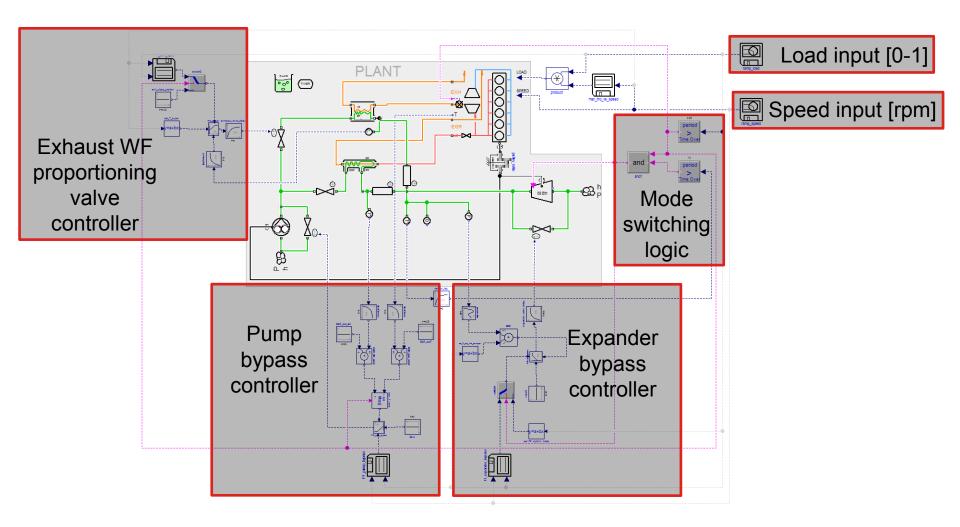


Design and Simulation Selected Transient Model Details


- Detailed physics based model that accounts for affects such as:
 - Expander (piston type) modeled using crank angle resolved physics based model
 - For long duration transients a steady map based model constructed automatically by training a neural net to reproduce physics model results
 - Heat exchanger models including
 2-phase flow and heat transfer effects
 - Nucleate boiling, convective boiling and condensation correlations
 - Validated against test data for complex HX layouts

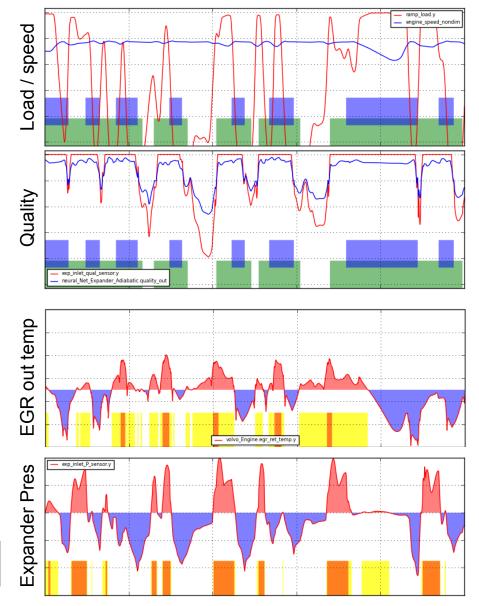
Design and Simulation Transient Controls Approach

- Several control system approaches considered
 - Model based
 - Difficult to implement due to large number of variables affecting plant performance
 - Closed loop control
 - Unable to generate stable closed loop system
 - Feed-forward with closed loop correction
 - Selected approach
- Mode switching based on operating conditions
 - Warm-up / cool-down
 - EGR cooling only mode
 - Power generation mode



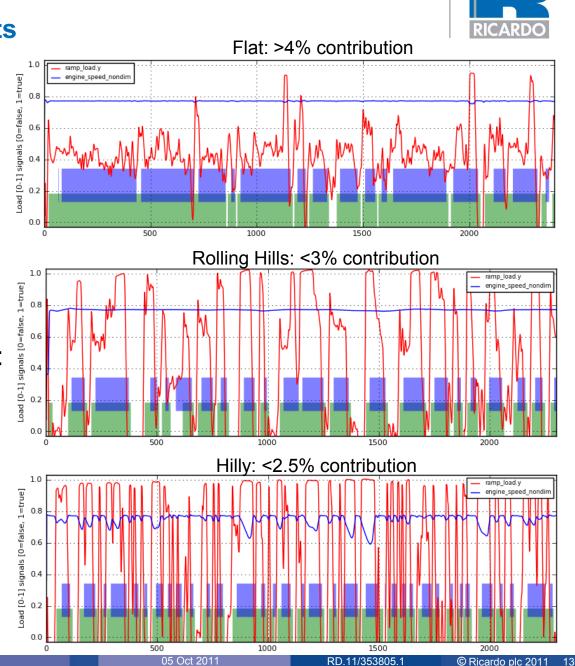
VOLVO

Design and Simulation Plant Model and Control System



Design and Simulation Transient Control System Performance

- Control performance assessed over highly transient cycles
- Control system switches between "Power Generation" and "EGR Cooling" mode when insufficient superheat is generated
- Control system maintains EGR gas temperature & system pressure within acceptable tolerance
- Initial calibration established using simulation environment



Power generation Sufficient superheat

Design and Simulation Transient Drive Cycle Results

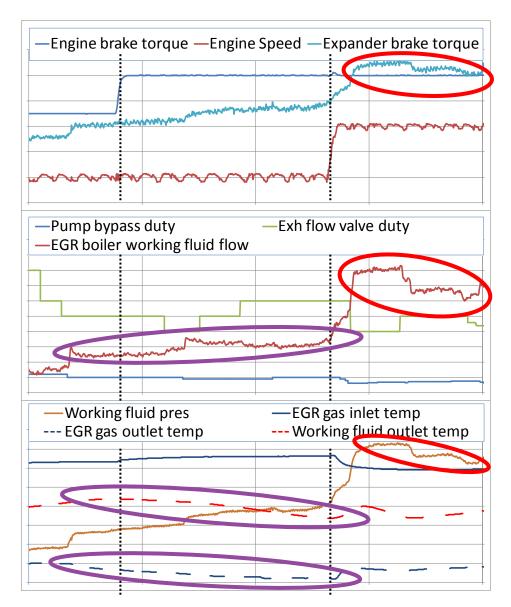
- Net fuel economy benefit strongly dependent on drive cycle (>4% to <2.5%)
- Limiting factors for higher fuel economy benefit are:
 - Low heat input operation:
 Expander is bypassed
 resulting in drag torque
 - High heat input operation:
 Bypass boiler / expander
 - Pressure limitation of heat exchangers: Limits power at high load points (expander sized for cruise)
 - Engine torque duty
 Engine speed duty
 Power generation
 Sufficient superheat

DEER 2011

VOLVO

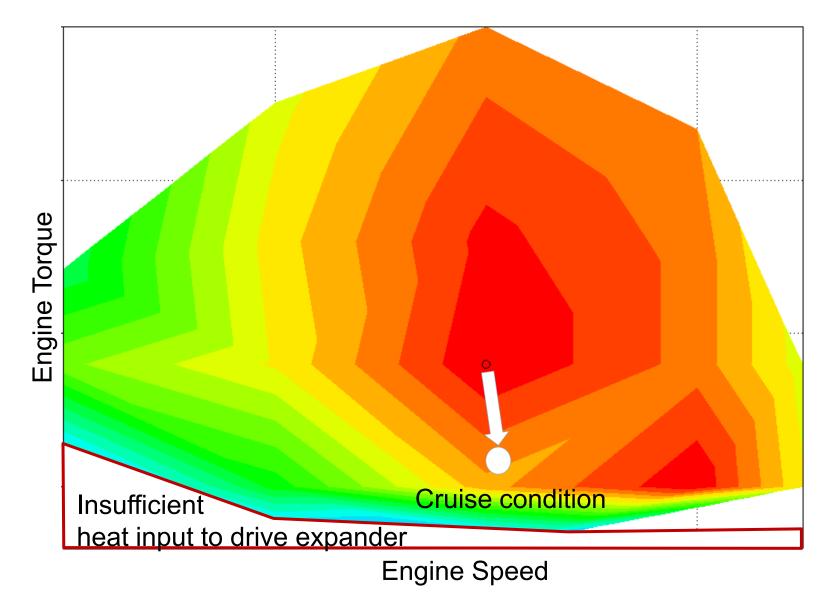
Procure and Build

- Prototype heat exchangers and expander (incl. pump & lube system)
- Control sensors from automotive production sources
- Industrial sources for all other components (valves, flexible pipes, sealing technology)
- Extensive instrumentation incorporated within design
 - Expander torque
 - Pressure
 - Temperature
 - Flow
- System installed & demonstrated in test cell with an engine including aftertreatment system



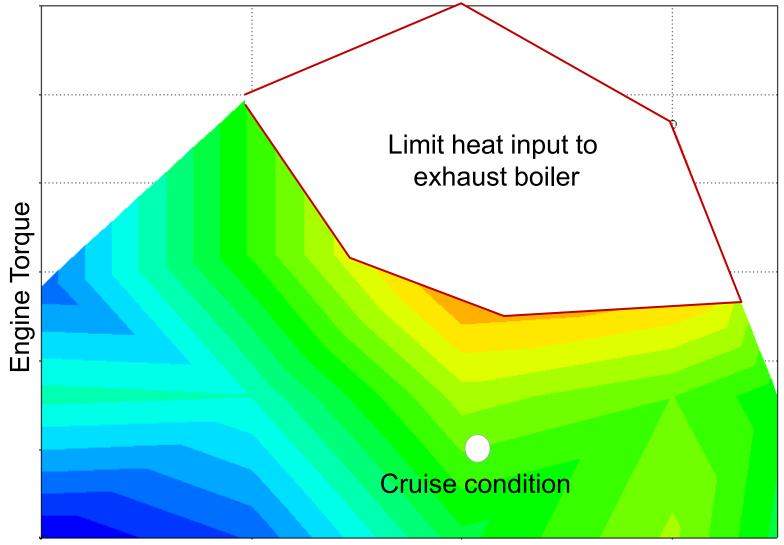
© Ricardo plc 2011 14

Testing & Controls Development Changes in Speed and Load Test Results


- Control of system is challenging
 - Thermal inertia
 - Flow restriction changes
 - Pump delivery with speed
 - Expander flow with speed, pressure and temperature
- Steady state for system is difficult to achieve
 - Variation in working fluid flow due to changing restriction
 - Thermal inertia of system

Testing & Controls Development Fuel Economy Contribution from ORC System

DEER 2011


05 Oct 2011

RD.11/353805.1

© Ricardo plc 2011 16

Testing & Controls Development Condenser Heat Rejection from ORC System

Engine Speed

|--|--|

Current Project Status

- Completed:
 - Establish concept to achieve targets
 - Development of transient simulation and control strategy
 - Design, procure and build ORC system in test bed
 - Steady state manual operation of ORC system across speed / load range
- Activities underway
 - Controls development underway in test bed
 - Calibration of system under transient conditions
 - Comparison of test data to simulation results

Lessons Learnt

Simulation

- REFPROP® access and calculation too slow to enable transient simulation
 - Utilize map based fluid properties
- Controls
 - Long system time period (thermal inertia) creates challenging transient control
 - Gas outlet temperature is leading indicator of working fluid temperature
- Operation
 - Get out of the saturation dome as quickly as possible
 - Heat input management of exhaust stream is very effective control

Acknowledgements

- This material is based upon work supported by
 - Department of Energy National Energy Technology Lab under Award Number DE-EE0004232
 - Department of Energy National Energy Technology Lab under Award Number DE-FC26-07NT43222
- Many thanks to Volvo Powertrain for their invaluable assistance during this project and allowing the presentation of the information

Considerations for Vehicle Application

- Applying ORC into a vehicle will require overcoming several other challenges:
 - Condenser heat rejection will be limited by the cooling pack
 - Current approach is to limit the heat input from the exhaust stream under high heat input conditions
- Drag during low heat input
 - Current system is mechanically linked to the crankshaft
 - Adds parasitic loss during periods with insufficient heat input due to expander drag
 - Addition of clutch would overcome issue
 - Cycle analysis required to show if investment is justified