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NOx Adsorber Technology 

Identified by the EPA 2007/2010 rulemaking process as a 
primary candidate for NOx emissions reduction

Major advancements in the fundamental understanding and application 
of the technology were required

Fundamental challenges[1]:

[1] Epling, Yezerets, Currier et al. “Overview of the Fundamental Reactions and Degradation 
Mechanisms of NOx Storage/ Reduction Catalysts”. Catalysis Reviews; V46(2004), p.163-245
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Multi-component, multi-
functional catalyst: 
• At least 3 components, 

with different functions
• Both red-ox and acid-

base catalyst chemistry
5 sequentially-coupled 
process
Sulfur poisoning/removal
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LEV II-ULEV Certified System
with Cummins 6.7L Engine and A/T System 

Close-Coupled Catalyst (2.1L)
• Elliptical metallic substrate, 

300 cpsi, by Emitec

NOx Adsorber Catalyst (5.2L)
• Cordierite, 300cpsi by Corning

Catalyzed Diesel Particulate 
Filter (9.4L)
• Cordierite, 200 cpsi by NGK

In-cylinder source of reductants and heat for A/T system 
control, enabled by: 

Bosch 1800-bar Common Rail fuel system 
Cummins next-generation cooled EGR
Variable Geometry Turbocharger
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Several Major 
Application Challenges

How to make NAC survive deSOx-related aging?

Trade-off between deSOx efficiency and thermal degradation

Different forms of sulfur

Reductant quality

Distribution of temperature and species across the catalyst

How to achieve maximum deNOx performance for a 
catalyst of a given age?

Catalyst diagnostics

Laboratory and on-board
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Tradeoff Between deSOx
Efficiency and Thermal Deactivation
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Unpublished Cummins data
D.H.Kim et.al. Ind.Eng.Chem.Res.2006,45, 8815

Comprehensive 
kinetic deSOx
model developed 
by Cummins

DeSOx-related 
degradation 
understanding 
from PNNL/ 
Cummins/ JM 
CRADA
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S can exist on NOx adsorber
catalyst in different forms

Chemically uniform (sulfate)
Morphologically different 
(surface/bulk)

Different Forms of Sulfur
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[S] form depends on the 
formation conditions 

Can be affected by 
subsequent re-distribution

Different forms of [S] 
have different impact on 
NOx performance

Examples of different forms of S
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Important to distinguish 
between forms of sulfur

No reason to attempt 
removing “bulk” sulfur –
• Additional thermal 

exposure

• Minimal advantage for the 
“dynamic” NOX capacity

Inherently non-
homogeneous species 
distribution in an 
integral device

Different Forms of Sulfur/ 
Distribution Across catalyst

0-1" 1-2" 2-3" 3-4" 4-5"
Distance from the inlet face

gS
/L

Surface, g/L

Bulk, g/L

Micro-core analysis: 
minimally invasive 
(<1cm3 sample) 
NOx performance, [S] 
amount and form
multiple locations in the 
catalyst



9

Gradients in integral devices
Gas species
Temperature 
Surface species

Pioneering role of NTRC(FEERC)/Cummins CRADA

Importance of 
Spatially-Resolved Measurements
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Rich: 2% O2, 4%CO, 5%CO2, 5% H2O, N2, Tin=300°C
SPACI-MS
P-Thermography

Additional work 
sponsored by 
Cummins at U. 
Waterloo

IR thermography
SpaRC
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• CO and H2
• C3H6 (model highly reactive HC) 
• C3H8 (model poorly reactive HC)

Use of efficient reductants
allows to minimize time at 
deSOx conditions 
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Reductant Quality

In-situ H2 generation may play a major role in deSOx (and 
deNOx) efficiency 

Complex spatial profile
Balance in-cylinder and in-situ H2 generation options

J.Parks, M.Swartz, S.Huff, B.West. FEERC/ORNL. DEER 2006, August 20-24, 2006, Detroit, MI
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Summary: Balancing 
Sulfur Removal vs. Thermal Deactivation

Minimize excessive temperature exposure 
Accurate control of deSOx temperature
Minimize temperature gradients across the NAC
Optimize reductant quality
Target only relevant forms of sulfur 
Capable laboratory diagnostic tools

Loading of removable sulfur
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Summary
Understanding the complexity of the system 
components (catalysts, sensors) during the design 
stage allows to develop robust, apparently simple 
solutions: 

In the final product, complexity is reflected in the controls and 
diagnostics

Significant opportunities remain for further system 
optimization, e.g.: 

Better understanding of the fundamentals of the components 
behavior (catalysts, sensors), including development of 
predictive models, would allow for tighter integration 
Laboratory and on-board diagnostics
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