

Cybersecurity for Grid Connected eXtreme Fast Charging (XFC) Station (CyberX)

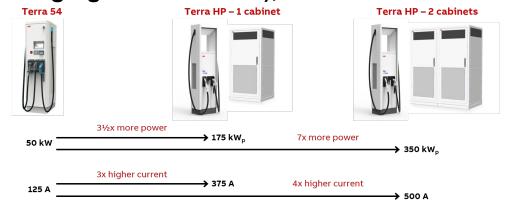
PI: Junho Hong

ABB Inc.

06/13/2019

ELT205

This presentation does not contain any proprietary, confidential, or otherwise restricted information


Overview

Timeline	Barriers		
 Project start date: 01/2019 Project end date: 12/2020 Percent complete: 20% 	 Designing XFC station considering future extensions Identify/detect anomalies in the XFC station Integrate the prototype result into power HIL testbed 		
Budget	Partners		
 Budget Total project funding Total: \$2.1 M 	Partners INL: Power hardware-in-the-loop and EV simulator for demonstration, Don R Scoffield (lead)		
Total project funding	INL : Power hardware-in-the-loop and EV simulator for demonstration, Don R Scoffield		

Relevance

Objectives

- Research, develop and demonstrate a resilient XFC (>350kW) station that reduces the risk and impact of cyber intrusions
 - Reduce the false positive/negative ratio of anomaly detection
 - Prototype integration using commercial products in power HIL testbed
- Design a resilient XFC station management system to safeguard EVs, EVCI (electric-vehicle charging infrastructure), customers and station operators

Relevance

Overall Impact

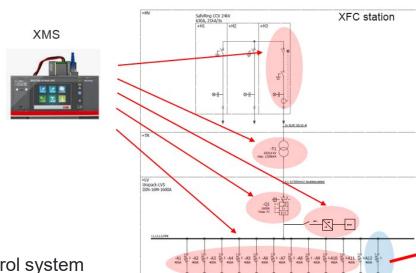
Impacts

- A cyber secure extreme fast charging (XFC) station that reduces the risk and impact of cyber intrusions
- Prototype implementation with commercial products in HIL
- Implement the solutions into existing and future products

Innovations

- XFC station management system with first principle based cybersecurity features
- A state-of-the-art anomaly detection system that can identify the abnormal cyber behaviors within the XFC station

Milestones


• Planned milestones and go/no-go decisions for FY 2019 and FY 2020

Milestone	Date	Туре
Complete design documentation of XFC station and control system	6/31/2019	QPM*
Complete threat analysis report	12/31/2019	Annual Milestone
Complete report of resilient control architecture	12/31/2019	Annual Milestone
Threat analysis report, and design documentation for XFC station	12/31/2019	Go/No Go
Prototype implementation for steady state validation	6/31/2020	QPM
Hardware integrated with HIL co-simulation platform and demonstration	12/31/2020	QPM
Complete report of CyberX performance analysis	12/31/2020	Annual Milestone
Knowledge dissemination to ABB's EV charger business unit	12/31/2020	Annual Milestone

* Quarterly Progress Measure

Approach

- Overall approach for CyberX
 - Tasks for CyberX
 - Task1.1: XFC station and control system
 - Task1.2: Threat analysis
 - Task1.3: Secure XFC station control methodology development
 - Task2.1 ~ 2.2: Methodology validation
 - Task2.3: Performance analysis
 - Task3: Knowledge dissemination
 - Unique aspects
 - XFC station management system (XMS) with cybersecurity features
 - Prototype implementation using HIL testbed
 - Use knowledge from previous/on-going DOE (CEDS) funded cybersecurity projects
 - Substation, microgrids, HVDC, FACTS and IEEE1547 and etc

©ABB May 1, 2019

Technical Accomplishment to Date

- Build XFC station system layout and design (off-line simulation platform) Milestone #1
- Build base XFC station model and use cases Milestone #1

Responses to Previous Year Reviewers' Comments

• The project was not reviewed last year

Collaboration and Coordination

Project collaborators

- ABB (prime), industry
- INL (sub), national lab
- APS Global (sub), industry
- Thor Trucks (sub): industry

Communications

- Weekly meeting, ABB internal
- Monthly meeting, Project partners
- As needed meeting with DOE and partners

Collaboration and Coordination (cont.)

Expertise

- ABB: Cyber attack detection and mitigation architecture and practices, algorithm development and validation with HIL testbed
 - Anomaly detection, machine learning, communications, and system modeling
- INL: Power hardware-in-the-loop simulator for demonstration
 - EV/EVSE communication, HIL testbed and power systems
- APS Global: Electric distribution system model and threat analysis
 - EV/EVSE cybersecurity and threat analysis
- Thor Trucks: Electric vehicle for testing of demonstration
 - EV engineer

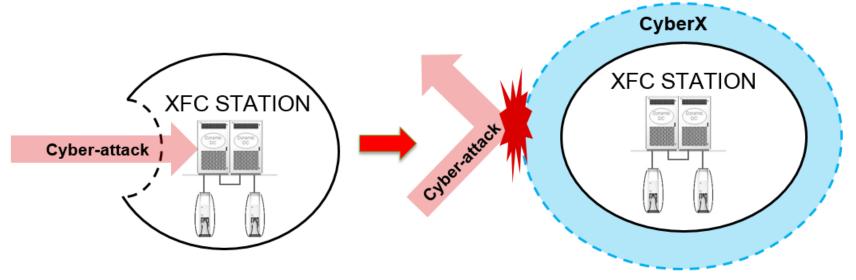
Remaining Challenges and Barriers

- Designing XFC station considering future extensions
- Identify/detect anomalies in the XFC station
- Integrate the prototype result into power HIL testbed

Proposed Future Works

Ongoing FY-19

- Finish the real-time system modeling in power HIL testbed, and perform functional testing and use case scenarios
- Integrate the High fidelity XFC charging models (INL)
- Complete a threat analysis report of the grid connected XFC station
- Develop cyber attack detection and mitigation algorithms


• FY-20

- Prototype implementation
- Power HIL testing using EV truck
- Performance analysis
- Dissemination

- Secure grid connected XFC (>350kW) station
- CyberX layer for cyber attack detection and mitigation
- Prototype implementation
- Power HIL testbed and demonstration

Technical Back-Up Slides

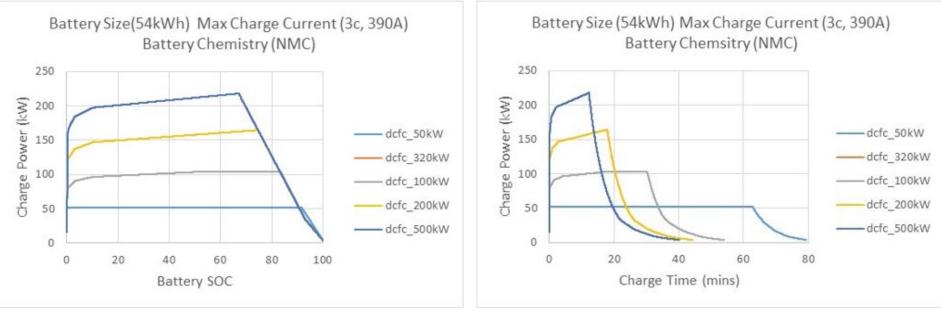
May 1, 2019 Slide 14

Resources and Capabilities

- What charging equipment or facility capabilities does your project have available?
 - ABB EV charger (350 kW)
 - XFC station management system (XMS)

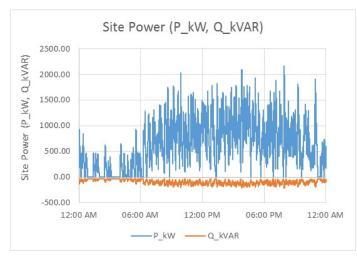
- INL has installed and commissioned the ABB Terra HP Fast charger in its lab
- XFC charging models will be based on and validated against this charger

Resources and Capabilities (cont.)


- What software/hardware tools will your team be using during the project?
 - MATLAB (system modeling), Python (ADS), C/C++ (XMS)
 - Embedded system for the prototype of XMS
 - Power HIL testbed (Opal-RT, Chroma grid simulator, EV simulator, EV truck and EV charger)
 - High fidelity XFC charging models (INL)

Resources and Capabilities (cont.)

High fidelity XFC charging models (INL)


- INL has done extensive battery testing for various battery chemistries
- Using test data able to generate high-fidelity charge profiles for PEVs that are not commercially available

Resources and Capabilities (cont.)

High fidelity XFC charging models (INL)

- XFC site load profiles can be very volatile
- Volatile behavior may cause False Positives in anomaly detection systems
- Accurate charging models needed when designing system to avoid False Positives

- XFC site charge profile generated from charging models
- XFC site with 6 chargers
- All PEVs charged at site able to charge at 350 kW

#