SLOAN AUTOMOTIVE

A Consortium to Optimize Lubricant and Diesel Engines for Robust Emission Aftertreatment Systems

Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel Economy

August 5, 2009

<u>Alexander Sappok</u>, Victor W. Wong, Maureen Murage

Massachusetts Institute of Technology Sloan Automotive Laboratory Cambridge, MA

Ash Impacts Diesel Particulate Filter Performance

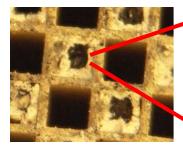
SLOAN AUTOMOTIVE

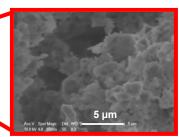
Ash Sources

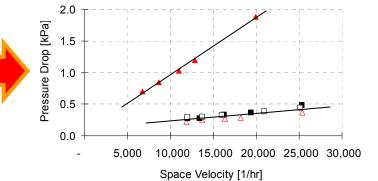
Source: K. Aravelli

CORNING

□ Lubricant additives (Zn, Ca, Mg, S, P)

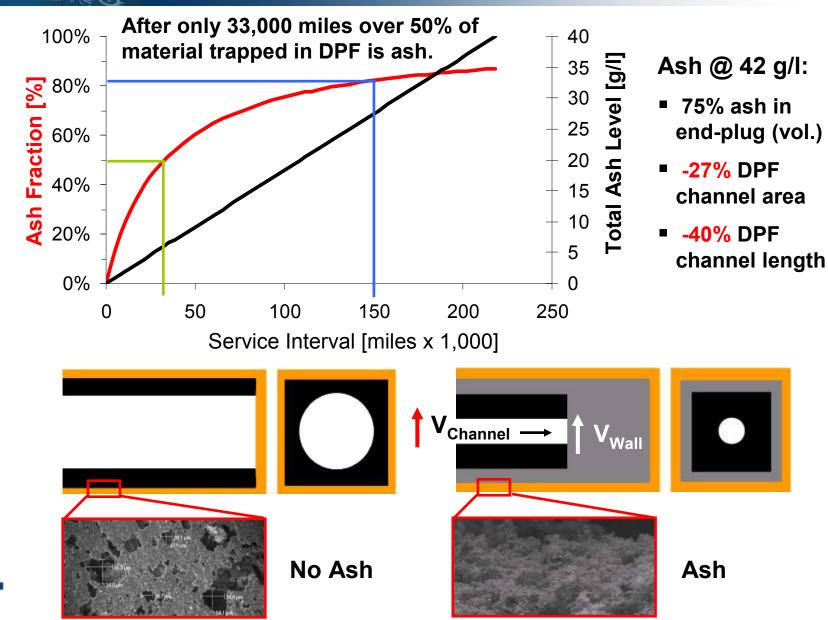

□ Engine wear, corrosion, trace metals in fuels


Courtesy: E. Senzer


Ash Mitigation

- □ CJ-4 oil specification limits sulfated ash to 1.0% maximum
- □ Novel DPF designs and substrates asymmetric, membranes, and others
- □ Reduced engine oil consumption

Fundamental Understanding of Ash Properties Lacking



Most of Material Trapped in DPF is Ash

SLOAN AUTOMOTIVE

Experimental Apparatus – DPF Performance Testing

SLOAN AUTOMOTIVE

Cummins ISB used for DPF performance evaluation before and after ash loading tests on accelerated test rig.

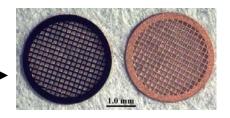
Cummins ISB 300

- □ Variable geometry turbocharger
- Cooled EGR
- Common rail fuel injection
- □ Fully electronically controlled

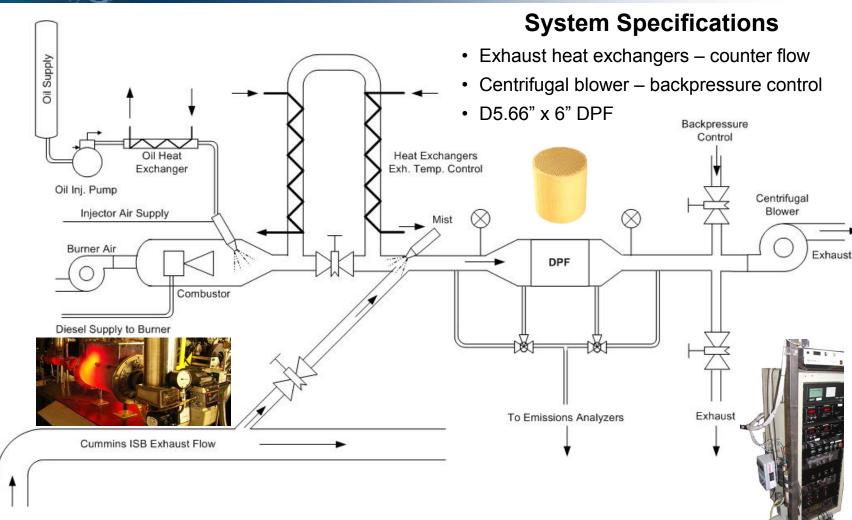
Gaseous Emissions

- CAI 300 HFID Hydrocarbons
- CAI 400 HCLD NO/NOx
- CAI 602P NDIR CO/CO2/O2
- API 100 E SO₂

Particulate Emissions


Sampling and comparison to burner

Cummins ISB 300 with DPF



Accelerated Ash Loading System

SLOAN AUTOMOTIVE

Accurately Simulate Key Oil Consumption Mechanisms

- Each parameter independently variable
- Precise control of quantity and characteristics of ash generated

Key Test Parameters

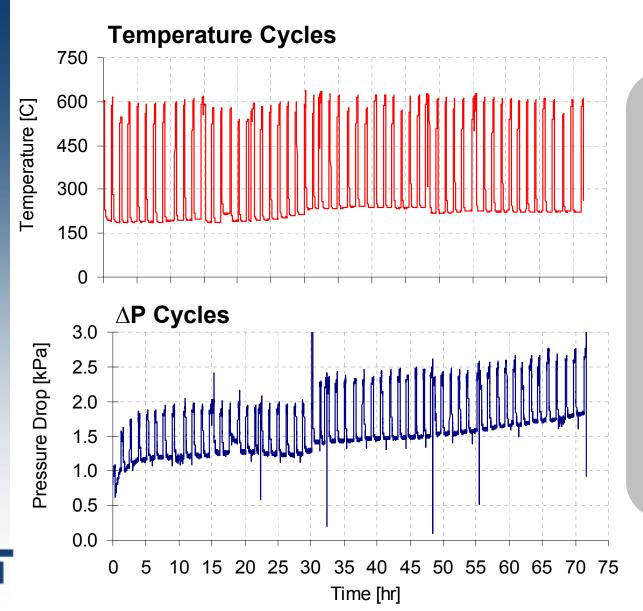
DPF Specifications

□ Substrate – Cordierite D5.66" x 6" 200/12, catalyzed

Lubricant Composition

	ASTM D5185							
Lubricant	В	Са	Fe	Mg	Р	Zn	S	Мо
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
CJ-4	586	1388	2	355	985	1226	3200*	77
Base Oil	1	<1	<1	<1	8	<1	60	<1
Base Oil + Ca	3	2928	1	5	2	<1	609	<1
Base Oil + ZDDP	1	<1	<1	<1	2530	2612	6901	<1

■ **Test Fuel** - ULSD (Metals below ICP MDL ~1.0 – 0.05 ppm)


DPF Ash Loading

 \Box Ash loading to max 42 g/l (equivalent on-road exposure ~ 240k miles)

Periodic regeneration cycle

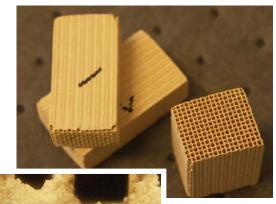
Typical Accelerated Ash Loading Cycle

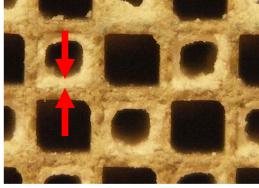
SLOAN AUTOMOTIVE

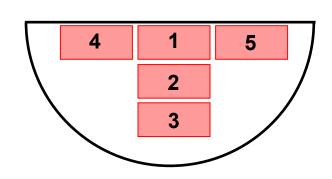
Loading Cycle

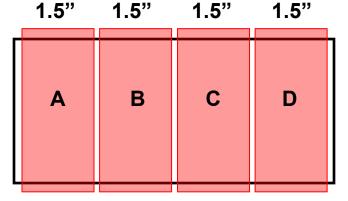
- 55 cycles
- 1 hour loading @
 250 °C inlet
- 15 min. regen @ 600–620 °C inlet
- Constant exhaust flow rate
- Exhaust temp.
 varied via heat exchangers

DPF Post-Mortem Analysis

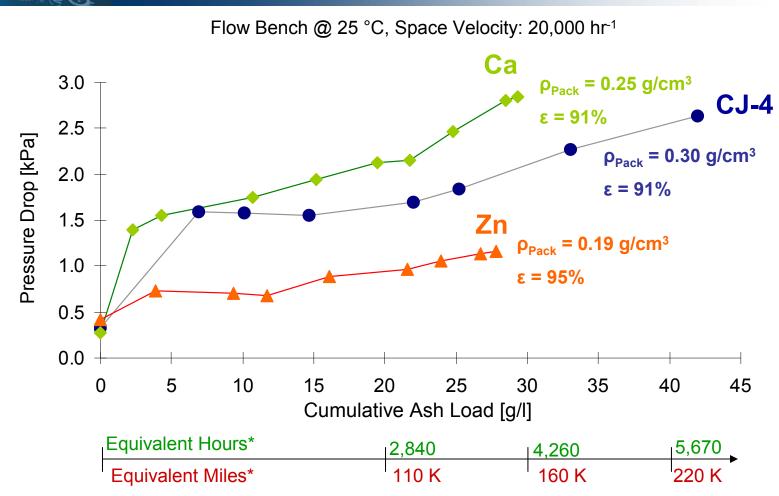

SLOAN AUTOMOTIVE


DPF Sectioned

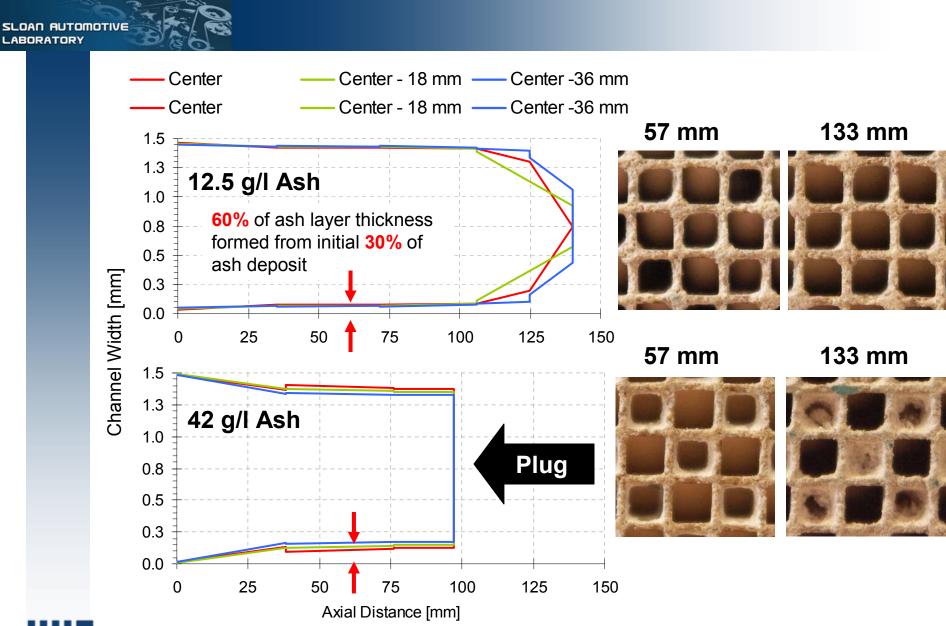

(4) Axial sections: 1.5" long
(5) Radial samples: ~140 - 180 cells
(20) samples per DPF


Sample Measurements

- □ Ash weight
- $\hfill\square$ Ash layer thickness and volume
- □ Ash composition XRD, SEM-EDX



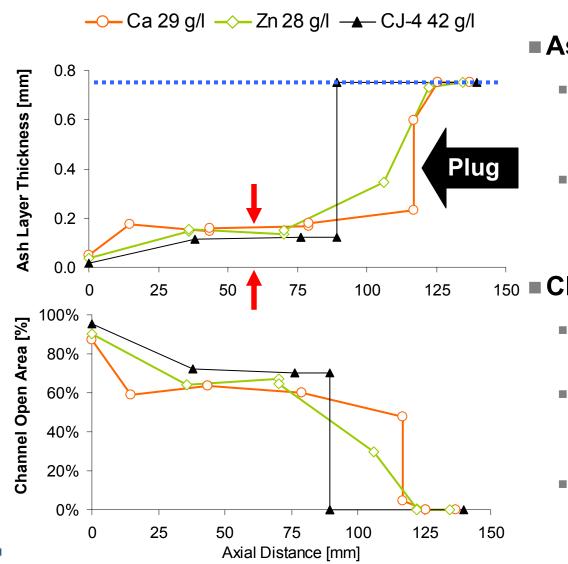
Individual Additive Effects on Pressure Drop (Ash)


SLOAN AUTOMOTIVE

- Lubricant additive chemistry affects ash properties and pressure drop
- Ca-based ash shows much larger effect on pressure drop than Zn ash

* Assumes: 15 g/hr avg. oil consumption, avg. speed of 40 mph, and full size DPF of 12 L volume

Ash First Accumulates Along DPF Channel Walls



Чï

> Ash preferentially deposited in end-plug during later stages of ash build-up

Ash Layer Thickness Profiles Similar for All Lubricants

SLOAN AUTOMOTIVE

Ash Layer Thickness

- Ca and Zn ash show slightly thicker ash layer vs. CJ-4 oil despite lower ash levels
- Ash deposits on walls before forming ash plug

150 Channel Open Area

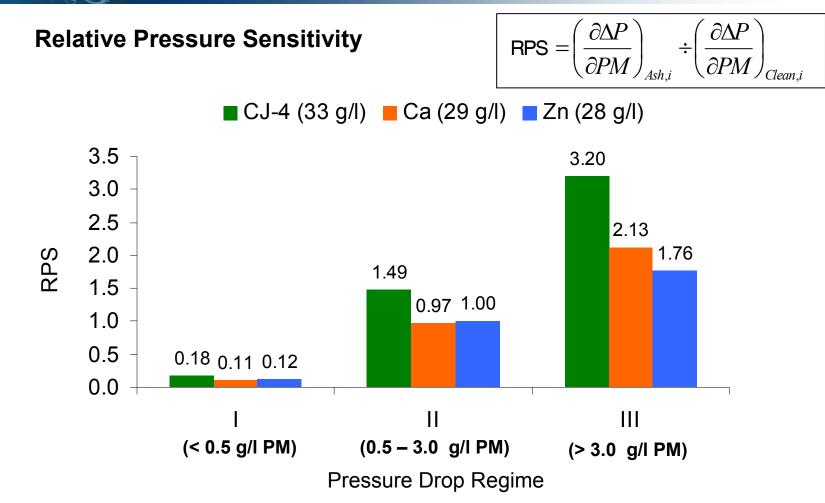
- Channel area reduced 27% to 40%
- Despite <u>similar deposit</u>
 <u>profiles</u>, Zn ash showed much lower pressure drop
- Ash properties (K) affected by lube chemistry

Additive Chemistry Affects Ash Packing Density

Significant difference in packing density for ash along wall vs. plug

- Ash in end-plug less densely packed than ash along channel wall for CJ-4 oil
- Variation in packing density less pronounced for Ca and Zn ash

Individual Additive Effects on Pressure Drop (Ash+Soot)


SLOAN AUTOMOTIVE

Flow Bench @ 25 °C, Space Velocity: 20,000 hr⁻¹ 9 **Ca** (29 g/l) Soot Deep Bed Eliminated CJ-4 (33 g/l) Pressure Drop [kPa] No Ash 6 **Zn** (28 g/l) 3 0 2 3 5 6 8 0 4 7 Cumulative PM Load [g/l]

- Ash loaded DPFs exhibit non-linear pressure drop response to PM loading
- Ash decreases pressure sensitivity to low PM loads <0.5 g/l</p>
- Ash increases pressure sensitivity to PM loads >3.0 g/l

Individual Additive Effects: Pressure Drop Sensitivity

SLOAN AUTOMOTIVE

- Ca and Zn base oils show similar effects on pressure drop sensitivity, particularly for soot loads < 3.0 g/l</p>
- Fully-formulated CJ-4 oil shows largest effect on pressure drop sensitivity

Ash and Soot Effects on Fuel Economy (CJ-4)

SLOAN AUTOMOTIVE

Estimated Euro III – 13 Mode Cycle Average -No Ash — 12.5 g/l Ash — 33 g/l Ash — 42 g/l Ash 6% 42 g/l Ash Soot + ash results in 5% large increase in FEP Fuel Economy Penalty [%] 33 g/l Ash 4% Ash effect on FEP minor (0.5%-1.0%) No Ash 3% 12.5 g/l Ash 2% 1% 0% 2 3 5 0 4 6 1 DPF Soot Load [g/l]

- FEP estimate assumes adiabatic expansion of ideal gas through turbo
- Model inputs from experimental data
- Soot + ash results in largest increase in FEP

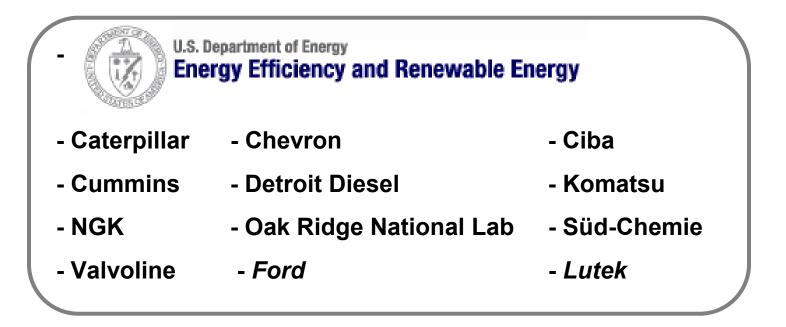
 $FEP \approx \frac{\Delta W_{turbo}}{\Delta W_{turbo}} \times 100$ Wengine

Conclusions

SLOAN AUTOMOTIV

Additive Chemistry Effects on DPF Pressure Drop

- Ash accumulation is a dynamic process Ash first primarily accumulates along channel walls before forming end plugs at the back of the DPF
- □ Increase in DPF pressure drop **2X** more severe with **Ca** ash than **Zn**
- Similar ash properties and pressure drop trends between CJ-4 oil and Ca oil indicate CaSO₄ may be most detrimental ash component


Ash + Soot Effects on DPF ΔP and Fuel Economy

- □ Ash decreases pressure sensitivity to low soot loads (<0.5 g/l)
- □ Ash increases pressure sensitivity for soot loads > 3g/l
- □ Increase in pressure drop sensitivity most severe with fully-formulated oils
- □ Ash alone results in only small increase in backpressure and fuel economy
- Soot accumulated in ash-loaded DPF results in largest FEP

Acknowledgements

Research supported by: MIT Consortium to Optimize Lubricant and Diesel Engines for Robust Emission Aftertreatment Systems

We thank the following organizations for their support:

MIT Center for Materials Science and Engineering

