

UNPLUG WITH

Wireless Advanced Vehicle Electrification

Project ID: elt240

Wireless Extreme Fast Charging for Electric Trucks (WXFC-Trucks)

Principal Investigator, Michael Masquelier

Wireless Advanced Vehicle Electrification

June 13, 2019

CONTACT: MICHAEL MASQUELIER, CEO <u>michael@waveipt.com</u> 773.962.1135

1

WXFC-Trucks | Overview

Timeline

- Project start date: August 2018
- Project end date: November 2021
- Percent complete: 10%

Budget

- Total project funding
 - DOE share: \$4,292,137
 - Contractor Share: \$5,546,103
- Budget Period 1:
 - DOE share: \$1,356,828
 - Contractor Share: \$2,113,903
- Budget Period 2:
 - DOE share: \$2,616,130
 - Contractor Share: \$3,015,537
- Budget Period 3:
 - DOE share: \$319,179
 - Contractor Share: \$416,664

Barriers

- Meeting the window of time to deliver a medium voltage feed to the charge site
- Obtaining the necessary permits for the project
- Acclimating drivers to electric vehicles requires changing driver habits (or other personnel) for plugging in the vehicles and aligning the trucks over the wireless chargers

Partners

- WAVE, Inc. Project Lead
- Cummins Inc. (Cummins)
- Schneider Electric (Schneider)
- Utah State University (USU)
- Port of Los Angeles (POLA)
- Total Transportation Services Inc. (TTSI)
- Los Angeles Department of Water and Power (LADWP)

2

WXFC-Trucks | Relevance

Impact

- The California Air Resource Board shows that 41% of all greenhouse gas emissions (429.5 MMTCO₂e in California in 2016) is due to transportation
- 7.8% of all greenhouse gas emissions was from heavy duty trucks (<u>https://www.arb.ca.gov/cc/inventory/data/graph/treemap/sector_activity_2000-16.htm</u>)
- Enabler for this major pollution transportation sector to become all-electric
 - Fully charged vehicles in roughly 20-minutes means minimal down time to refuel and minimal impact on existing route planning
 - No cables means hands-free instant start of charging with no special personnel required
- Overcoming the charging time obstacle leads to a 3x to 4x reduction in actual fuel costs for vehicle operation
- Accelerate manufacturing and deployment of electric heavy-duty trucks

Objectives

- Wireless extreme fast charging
- MV grid to DC converter
- Extreme fast charging capable electric truck

3

WXFC-Trucks | Relevance

FOA Objective	WXFC-Truck Expected Outcomes
Recharge battery in half the time	 New system with 500 kW wireless charging
Develop and verify vehicles equipped with XFC, charger installation and demonstration	 W-XFC system deployment and operation at POLA with two Class-8 trucks customized to support XFC.
	 Deployment in two stages. First early deployment with 250 kW charging and second final deployment at 500 kW
	• Combined, over two years of evaluation data and best practices
System design and grid infrastructure impact	 Direct MV 3-phase AC to DC single stage conversion solution to reduce grid integration costs, system size and weight, and improve efficiency.
Catalyze manufacturing and adoption of electric trucks	 Project goal targets key barrier to market adoption
	• Over two years of system hardware demonstration and evaluation are performed at one of the world's highest volume shipping ports at a critical time with zero emission requirements in place by 2035
	In place by 2035

WXFC-Trucks | Approach

6

WXFC-Trucks | Approach

500kW MV Grid Connected AC/DC Supply Approach

- 3-phase unfolder with a soft DC bus two-level output
- Develop the 3-phase unfolder to achieve direct MV grid connection with switches commutating at the line frequency
- Design the series stacked isolated DC/DC converters to achieve the voltage step down function from MV naturally with near unity conversion ratio to obtain high efficiency

Extreme Fast Charging Capable Electric Truck Approach

- Investigate appropriate battery chemistry (LTO cells or NMC cells)
- Design custom thermal management for the cell to facilitate charging at 3C
- Select appropriate battery pack capacity and cell chemistry to integrate with electric powertrain applicable to Class 8 drayage applications

WXFC-Trucks | Approach

500kW Wireless Charging System Approach

- Deploy 250kW charger with initial truck integration to demonstrate appropriate charging gap and form factor
- Leverage deployment experience with 250kW charger
- WAVE has experience integrating with different OEMs

MV Grid Connected AC/DC Supply Progress

- Active coordination between USU, WAVE, and SE on converter specifications and the interface with the wireless charger
- Selected and ordered the major power components with long lead time for the ac-dc converter
- Completed the thermal analysis for the power semiconductor devices and transformers to determine the system mechanical layout and cooling solution
- Proposed a plan for the MV rated enclosure for the power converter with minimized footprint
- Developed a low voltage low power prototype to validate the modeling and control strategy
- Started to design the transformer for the dc-dc converter modules

This presentation does not contain any proprietary, confidential, or otherwise restricted information

9

250kW Wireless Fast Charger Integration Progress:

- Initiated contact with five class-8 truck vendors and enlisted TTSI to assist in the approval of a truck to be the recipient of the 250kW installation
- Site for the 250kW charger and primary equipment location has been determined

WXFC System Design Process:

- Pad geometry simulated that greatly reduces stray fields to enable the higher power to be safely transferred over the potentially wider gap
- Impacts on site design to accommodate the additional power have been evaluated
- Truck mounting system requirements for the new pad-set have been communicated to the truck vendor

Infrastructure Design (In-progress):

57-67", SEP REP. ROLA BWG 1-2208 E-3

Duty Cycle Requirements for Drayage at POLA

Using NREL drayage cycle and bridge network near POLA, constructed a round-trip duty cycle of:

- 40 miles selected as it exceeds majority of TTSI's typical local drayage routes
- TTSI desires ability to operate fast charging battery electric trucks up to 20 hours/day
- Overall work day duty cycle: <u>four</u> 40-mile round-trips including charging, loading, lowspeed port operation

Truck & Powertrain Design

- Kenworth T680 Series
- 236" wheelbase
- Air suspension on front <u>and</u> rear axles to support kneeling over primary plate
- Overall truck length with a 45' container is < 65'
- Powertrain

– 330 kW of continuous power
 to achieve <a>30 mph when fully
 loaded on Vincent Thomas Bridge

Battery Selection

- Battery selected to achieve useable energy and charge power requirements:
 - Useable energy of > 140 kW-h
 - Supports charge power of 500 kW
- Selected battery:
 - 212 kW-h total capacity
 - Supports 500 kW (near 3C charge) for life of project
 - NMC/graphite battery cell chemistry
- Thermal management during extreme high power charging is a focus area of study

12

WXFC-Trucks | Response to Previous Reviewer Comments

• This project has not been reviewed.

WXFC-Trucks | Collaboration & Coordination with Other Institutions

- The Port of Los Angeles Deployment Partner
- Los Angeles Department of Water & Power – Deployment Partner
- Total Transportation Services Inc. Port Trucks Partner
- **Cummins** Truck Integration and Electric Drivetrain Partner
- Utah State University Research Partner
- Schneider Electric Electrical Supplier, Industrialization Partner

14

WXFC-Trucks | Remaining Challenges & Barriers

MV-Grid Converter:

- Confirm converter layout to satisfy the MV related high voltage isolation requirements according to UL standard
- Design of the high frequency, high power and high isolation voltage transformer for high efficiency and reliable system operation
- Validate the control strategy of the new topology and interactions between the AC-DC and inverter stages

250kW System:

- Selection of a truck that will provide the high-power charging interface required
- Demonstrating the 250kW transfer over the wide gap

500kW System:

- Difficulty increasing power density
- Simulation to a sufficient level that a real solution is demonstrable for both pads and equipment

15

WXFC-Trucks | Proposed Future Research

- Complete the converter voltage map and enclosure design according to the UL standard
- Demonstrate the dc-dc power converter module with 80 kW rated power
- Complete construction of the 3-phase MV unfolder
- Design thermal management system for battery pack
- Extreme fast charged electric truck construction and testing
- Integration with wireless charging hardware
- Complete simulation of variants of the pads to determine an optimal 'real world' solution, showing:
 - Total power transfer with estimated losses
 - Sensitivity to gap and alignment changes
 - A 'small' form factor
- 500kW wireless charging demonstration with truck
- WFXC system and trucks operation data analyzed and reported

Any proposed future work is subject to change based on funding levels

WXFC-Trucks |Summary

This project brings together all three critical components needed to solve the barrier for adoption of electric heavy duty vehicles:

- High-efficiency MV grid supply to lower energy costs and reduce total footprint of equipment
- High-efficiency, high-energy density wireless extreme fast charger
- An all-electric vehicle capable of high C-rate charging and equipped to handle a wireless charging system

This project's overall system approach is driving research that will result in a highly costeffective solution that will make adoption of all-electric fleets not only viable, but very compelling.

Critical success factors include:

- Development of a 500kW wireless charging system
- Development of a Class-8 truck powertrain with a battery pack capable of reliably and repeatedly charging at a greater than 3C-rate up to 500kW
- Development of a modular direct MV 3-phase AC to DC power converter

17