WestSmartEV: Western Smart Plug-In Electric Vehicle Community Partnership for Electric Vehicles and Infrastructure

James Campbell and Regan Zane
June 19, 2018

PI: Chad Teply Project ID: ti081

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Overall Goal

 Increase EV adoption in the Intermountain West

Timeline

- Start: January 19, 2017
- End: January 18, 2020
- 33% Complete

Budget

Total project funding	\$11,168,873
DOE share	\$3,532,330 (PacifiCorp)
	\$450,000 (INL)
Cost share	\$7,186,543
Budget period 1	\$559,250
Budget period 2	\$1,598,975
Budget period 3	\$1,374,105

Any proposed future work is subject to change based on funding levels.

Barriers Addressed

- Limited availability of charging infrastructure along travel corridors and places of work
- Limited options for multi-modal electric transportation at the community level
- Limited understanding of electric transportation solutions and benefits

Partners

- PacifiCorp
- Utah State University
- Utah Clean Cities Coalition
- University of Utah
- Idaho National Laboratory
- Forth Mobility
- Park City
- Salt Lake City
- Breathe Utah

Project Objectives

Objectives

Increase EV adoption to consequently reduce emissions and petroleum use

Support of VTO Tech

- National Security: reduce foreign oil; bolster interstate tech
- Economic Growth: spur EV sales and charging/grid development
- Affordability: influence billing rates and charger placement
- Reliability/Resiliency: plan for grid impacts and opportunities

Goals

- Increase EV charging/range capacity on electrified highways
- Expand EV owner opportunity to charge at places of work
- Provide and supplement PEV purchase incentives
- Develop electric mobility solutions to connect technologies and communities

Impact

- Facilitate data-based investment and policy decisions
- Create awareness and buy-in through outreach materials and workshops

Project Approach

REPORTATE INTERSTATE Task 2 Workplace Task 1 Electric Highways: Charging: Workshops and 1,500 miles of electrified INTERSTATE 600+ L2 at work locations interstate with 65+ DCFC **ELECTRIC** HIGHWAYS CHARGING Task 3 EV Adoption Task 4 Smart Mobility: Pilots: Incentives for All electric solutions in SMART MOBILITY 200+ EV purchases urban areas WESTSMART EV CENTRAL Task 5 WSEV Central: Task 6 Outreach: Lessons learned dissemination, Data collection, analysis, modeling, lessons learned materials, workshops

Go/No Go Considerations: EV adoption forecasts validated and on track; success in pilots indicate positive plan for expansion

Milestones

Pilot Phase Milestones	Type	Progress
Pilot partner proposals received from desired locations	Technical	Achieved
Pilot corridor chargers operating, lessons learned/best practices (LL/BP) positive for expansion	Technical	Achieved
Workplace charging at team sites, data collection proceeding	Technical	Achieved
Pilot workplace charging operating, LL/BP positive for expansion	Technical	Achieved
Pilot EV deployment operating, LL/BP positive for expansion	Technical	Achieved
Pilots in SLC/Park City demonstrate smart mobility approach viability	Technical	Achieved
Adoption models validated, pilot data indicates meeting impact goals	Go/No Go	Achieved

Expansion Phase Milestones	Type	Progress
Corridor chargers expanding, LL/BP positive for full rollout	Technical	In Progress
Workplace charging expanding, LL/BP positive for full rollout	Technical	In Progress
EV adoption numbers expanding, LL/BP positive for full rollout	Technical	In Progress
Mobility services expanding, LL/BP positive for full rollout	Technical	In Progress
Smart mobility expansions based on pilot LL/BP validate models and indicate positive plan for rollout	Go/No Go	In Progress

Accomplishments: DCFC location analysis

 Developed power and energy demand models along the corridors

Dynamic vehicle models

All corridors, each direction, including elevation

 State DOT volume and origin-destination traffic data

 Developed dynamic analysis tool of EV trips supported by DCFC

Energy consumption model

 EV trips possible through the network

Online visualization tools

EV SOC

Web-based

EV trips possible to

location (Moab)

Accomplishments: Charger integration

Chargers installed or in progress to date

- 20 DC Fast Chargers (DCFC)
- 343 Level 2 (L2) AC charger ports

Highway corridor coverage

- Utah Interstates I-15, I-80: chargers at least every 100 miles, targeting every 50 miles
- National parks: EV access to Zion and Bryce Canyon, plans for Arches and Yellowstone

Photos: PlugShare.com

Accomplishments: Data Analysis Overview

Quarterly Analysis and Reporting

- Level 2 EVSE & DC Fast Chargers
 - ChargePoint
 - GreenLots
 - EVgo
- Analysis and reporting includes
 - Cumulative metrics
 - Weekday vs. Weekend
 - 15-minute utilization
 - PEVs connected
 - Electrical load demand
 - Time of day distribution
 - % of EVSE connected
 - % of EVSE transferring power
 - Energy transfer
- Wide range of locations
 - Workplace charging
 - Urban public
 - Corridor travel

Accomplishments: Further In-Depth Analysis

- Variation in driver choice
 - Battery SOC
 - Start of charge
 - End of charge
 - Impact of price per
 - Connection
 - kWh
 - Duration
 - Time of day and duration of charge event
- Variation in fleet composition
 - BEV vs. PHEV
 - CHAdeMO vs. J1772 CCS
 - PEV charge requirements
 - Level 2 charge power
 - DCFC charge power
 - PEV energy requirements

Photo: PlugShare.com

Photo: PlugShare.com

Accomplishments: EVSE Utilization Analysis

- EVSE hogging
 - PEV occupies the EVSE after charging completion
 - Results in lost charging opportunity for others
 - Dependency linked to EVSE rate structure fee:
 - no cost for charging
 - 1 \$ per connection
 - 1 \$ per kWh
 - \$ per time connected
- Less hogging
 - Leads to more charging opportunities
 - Better for both EV drivers and EVSE operators
 - Potentially improves utilization

Accomplishments: Residential Grid Impact

Probabilistic PEV Grid Impact Analysis Tool

- Results show that even at high residential EV charger integration, the utility transformer overload probability is trivial (0.7% for 6 chargers in 11 homes)
- TOU tariffs would reduce transformer overload probability
- results achieved using INL EV Data

Accomplishments: Smart mobility e-bus

Six electric buses

- 253,098 miles travelled
- Cost per mile: \$0.208
- 23 MPGe (vs. diesel at 4 MPG)

Photo: Park City Transit

88 electric bikes

- First and last mile solution
- 32,634 miles, 9,623 trips

Y2 rollout planning: Salt Lake City

- Collected real world drive cycles
- Developed electric bus system planning tool

Accomplishments: Smart mobility services

Launched UBER electric program

- First pilot program in the nation
- Incentivize drivers to participate
- Train drivers to be EV ambassadors
- Provide access to multiple strategically located fast charging stations

Launched electric car share program with Giv Development group

- New low-income housing project powered by 100% renewable energy
- Car share for residents includes short and long range EVs

Photo: Forth Mobility

Photo: Giv Develoment

Accomplishments: PEV adoption model

- Incorporates latest PEV sales data
- Calibrated updated EV adoption model
- Planned model improvements will incorporate impacts of
 - Charging infrastructure along corridors and at the workplace
 - Smart mobility solutions and services
 - EV incentive programs
 - Outreach activities

Collaboration/Coordination Among Project Team

Program Planning, Management, Communication, DOE Reporting

- Program coordination
- Electric transportation tech advisor

Prime/Project Lead

- Regional Utility (UT, ID, WY, WA, CA, OR)
- PMP execution, task/milestone tracking
- RMP/USU Bi-weekly program management calls
- RMP/USU Bi-weekly calls with each task area team
- RMP/USU Bi-monthly face to face entire team meetings

- Modeling
- Data collection and analysis
- Charging infrastructure
- Smart Mobility, Electric Hwy task lead

- Real-time data collection, analysis and processing
- Federal Laboratory resources and perspective

- Distributed energy and grid integration
- Grid impacts research perspective on RMP/EVSE interface

- Workplace charging/Fleet task lead
- Leverage Clean Cities networks for outreach, education workshops

- Local government initiatives
- Sustainability and Smart Mobility deployment

Additional Partnerships

EVIA, Forth, Regional Clean Cities, Breathe Utah, ChargePoint, Maverik, UDOT, Utah DEQ, UTA

Overall Impact

Contribution highlights to date

- The number of EVs in Utah has doubled
- I-15 Utah highway corridor has been electrified
- Cost effective electric bus system has been deployed

Sustaining project goals beyond period of performance

- PacifiCorp cost share investment \$2M per year committed for two years past period of performance
- Project engagement with communities on mobility solutions
- Development and dissemination of lessons learned and best practices for extension to other geographical areas and markets

Projected overall impacts by 2026

- Double EV growth rate, resulting in more than 60,000 EVs
- Reduce annual CO2 emissions by more than 300M pounds
- Reduce annual imported oil use by more than 29.9M gallons

Summary

Three key takeaways

- The project's overall goal to increase EV adoption in the Intermountain West is being achieved.
- The primary methods of achieving this goal include
 - DC fast charging on corridors and L2 charging in the workplace
 - New and expanding electric mobility services
 - Effective and consistent outreach and education efforts
 - Data-driven decision making; lessons learned plugged in as best practices
- In one year, the number of EVs in Utah has doubled; with critical infrastructure in place and expanding, the region presents fertile ground to see similar growth; and communities are realizing the benefits of reduced environmental impact and stimulated economic impact.