

Proudly Operated by **Battelle** Since 1965

Room-temperature Stamping of High-Strength Aluminum Alloys

AASHISH ROHATGI aashish.rohatgi@pnnl.gov

Ayoub Soulami, Elizabeth Stephens

Pacific Northwest National Laboratory

DOE-AMR 2018, Washington, D.C.

Project ID # mat126

Overview

Timeline

- Start: 10/2016 (FY17)
- Finish: 09/2019 (FY19)
- % complete (time): ~50%
- % spent (budget): ~24%

Budget

- Total project funding
 - DOE: \$ 1M
 - Industry cost share: 30%
- ► Funding since inception: ~\$ 540K
- Future funds anticipated: ~\$ 460K

Barriers

- Strength: Develop process for stamping high-strength Al for structural applications without degrading its high strength
- Formability: Develop ways to enable sufficient formability of Al to stamp it at room-temperature

Partners

- Magna-Stronach Centre for Innovation (Tier-1)
- General Motors (OEM)

Relevance/Objective

DOE-VTO

- Long-term objective → 50% mass reduction of a vehicle
- 2025 Target → 25% glider mass reduction, relative to comparable 2012 vehicles, at an added cost of no more than \$5/lb weight saved

USDRIVE

- Aluminum components offer potential overall weight reduction of 40-60% when replacing cast iron/steel
- Methods to improve the formability of high-strength Al alloys (>600 MPa), to values equivalent to steel, are a high priority research need
- Project objective
 - Develop thermo-mechanical approaches to enable room-temperature stamping of highstrength (7xxx) Al alloys
- Challenges
 - High-strength Al alloys do not have sufficient formability to be stamped at room-temperature
 - Warm/hot stamping is costly and may require post-forming heat-treatments to regain the high-strength

Pacific Northwest NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965

Approach

Develop thermo-mechanical processing to enable cost-effective stamping of highstrength AI at room-temperature and without the need for additional heat-treatment

- ▶ Identify a component benefitting from being made of high-strength Al alloys
- Perform experiments to evaluate thermo-mechanical treatments
- Use constitutive relations and stamping simulations to verify that the selected component can be stamped at room-temperature
- Integrate microstructure and mechanical property models
- Fabricate and characterize the stamped component

Approach

- Phase I (3 months)
 - Task 1: Identify 3-5 potential stamped sheet components
 - Gate 1: Demonstrate potential for sufficient return on (DOE) investment and the potential for commercialization to replace high-strength steel with high-strength Al
- Phase II (15 months)
 - Task 2: Determine strengthening potential of W temper formed 7xxx Al alloys
 - Task 3: Determine constitutive relations for selected Al alloys
 - Task 4: Perform stamping simulation for the selected prototype structural component
 - Gate 2: Stamping simulations that predict with confidence that the selected component can be stamped in at least one 7xxx Al alloy-temper combination at room-temperature
- Phase III (18 months)
 - Task 5: Integrate microstructure and mechanical property models for the selected Al alloys
 - Task 6: Fabricate prototype component
 - Task 7: Characterization of prototype component

Accomplishments Material and Component Selection

Example of candidate component for high-strength steel substitution by high-strength Al

- Door side impact beam
- Rocker outer and inner
- Roof rail
- A-pillar inner
- Example of high-strength Al alloys
 - AA7075
 - AA7055
- Estimated weight savings ~30-50%

Accomplishments Material Characterization

Proudly Operated by Baffelle Since 1965

Initial characterization (mechanical properties) of AA7075 in different tempers via tension testing, hardness and formability testing

Accomplishments **Formability Modeling-Friction Effects**

Proudly Operated by Battelle Since 1965

% Minor Strain (Engineering)

Responses to Previous Years Reviewers' Comments

No Reviewers' Comments as this is the first year for project review

Collaboration and Coordination

- Magna-SCFI (Tier-1)
 - Component selection
 - Component model
 - Stamping simulations
 - Prototype fabrication
- General Motors (OEM)
 - Internal studies on lightweighting
 - Component and Al alloy selection
 - Component design
 - Die design
- ORNL
 - Rich Davies Initial project development

Remaining Challenges and Barriers

- Determine the thermomechanical processing that allows simultaneous formability (at room-temperature) and high strength in the formed component
 - Combined experimental and modeling approach
- High-strength AI can continue to undergo natural aging after forming
 - Post-formed mechanical properties need to be evaluated for long-term thermal stability
- Cost-effectiveness of the proposed approach is unknown

Proposed Future Work

- Develop constitutive relations for selected alloy (PNNL, Magna)
- Perform stamping simulations and iterate on component design (Magna, PNNL)
- Integrate microstructure and mechanical property models (PNNL)
- Design stamping die and stamp prototype component (Magna)
- Characterize the stamped component (PNNL)

Any proposed future work is subject to change based on funding levels

Technology Transfer Activities

Provide mechanical test data to Magna to develop appropriate material cards for stamping simulations

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Summary

- Goal is to develop a process to stamp high-strength Al at roomtemperature without a separate precipitation-hardening heat-treatment
- Multiple structural components have been identified that have substantial lightweighting potential if formed out of high-strength Al alloy instead of high-strength steels
- ► PNNL will develop a thermo-mechanical process and work with OEM and tier-1 supplier to stamp and deliver a prototype component out of high-strength Al

Proudly Operated by Battelle Since 1965

Technical Backup Slides

AASHISH ROHATGI aashish.rohatgi@pnnl.gov

Rich Davies, Ayoub Soulami, Elizabeth Stephens Pacific Northwest National Laboratory DOE-AMR 2018, Washington, D.C.

Project ID # mat126

Example of Prior Literature Reviewed

Proudly Operated by Battelle Since 1965

- An Assessment of Mass Reduction Opportunities for a 2017 2020 Model Year Vehicle Program. Lotus Engineering Inc. Submitted to: The International Council on Clean Transportation. March 2010. Accessed on 1st Dec. 2016 from http://altairenlighten.com/wp-content/uploads/2016/03/Mass-Reduction-Opportunities-for-a-2017-2020-Model-Year-Vehicle-Program.pdf
- 2. Lutsey,N., 2010. Review of technical literature and trends related to automobile mass-reduction technology. Institute of Transportation Studies, University of California, Davis. UCD-ITS-RR-10-10. http://pubs.its.ucdavis.edu/publication_detail.php?id=1390
- 3. Skszek, T., Zaluzec, M., Conklin, J., and Wagner, D., "MMLV: Project Overview," SAE Technical Paper 2015-01-0407, 2015, doi:10.4271/2015-01-0407.
- 4. Plourde, L., Azzouz, M., Wallace, J., and Chellman, M., "MMLV: Door Design and Component Testing," SAE Technical Paper 2015-01-0409, 2015, doi:10.4271/2015-01-0409.
- 5. Kearns, J., Park, S., Sabo, J., and Milacic, D., "MMLV: Automatic Transmission Lightweighting," SAE Technical Paper 2015-01-1240, 2015, doi:10.4271/2015-01-1240.
- 6. https://www.amag.at/fileadmin/user_upload/amag/Downloads/AluReport/EN/AR-2014-3-EN-S14-15-.pdf. Accessed 29th Nov. 2016.
- 7. Reaburn, R., "Ultra-light Door Design," presentation given at the DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, Washington, D.C., 2017. https://energy.gov/sites/prod/files/2017/06/f35/lm120_skszek_2017_o.pdf
- 8. Kumar, S.D., Amjith, T.R., Anjaneyulu, C., Forming Limit Diagram Generation of Aluminum Alloy AA2014 Using Nakazima Test Simulation Tool, In Procedia Technology, Volume 24, 2016, Pages 386-393.
- 9. Părăianu L., Comşa D., Gracio J., Banabic D. (2007) Modelling of the Forming Limit Diagrams Using the Finite Element Method. In: Advanced Methods in Material Forming. Springer, Berlin, Heidelberg.