Reduced Petroleum Use Through Easily-Reformed Fuels and Dedicated EGR

Southwest Research Institute®

Thomas E. Briggs, Jr. – Principal Investigator June 21,2018

Project ID: FT066

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline	Barriers Addressed
 Start date: October 1, 2014 End date: June 30, 2019 Percent complete: 37% 	 Improve combustion robustness for EGR-diluted SI combustion Wide speed- and load-range operation of high EGR dilution Improved understanding of ethanol/gasoline blend combustion
Budget • Contract value: \$1,008,945 • DOE share: \$793,913 • Cost share: \$215,032	Partners FIAT CHRYSLER AUTOMOBILES

Relevance / Project Objectives

- Efficiency
 - Extend the efficiency of spark ignition engine combustion through synergistic application of dilute combustion and optimized fuels
- Petroleum use reduction
 - Through a combination of improved engine efficiency and increased bio-sourced fuel content, demonstrate a path to a 20% reduction in petroleum consumption
- Emissions reduction
 - Extend the efficiency of stoichiometric EGR-diluted combustion to be competitive with lean burn while using conventional emissions control solutions

Milestones

Date	Milestone or Go/No-Go	Status
September 2015	Demonstrate H ₂ production > 2.5% in- engine with regular fuel	Complete
September 2018	Model fuel evaluations for increased H ₂ production	On track
December 2018	Minimally-processed (refinery) fuel evaluations – Demonstrate <3% H ₂ production in-engine	On track
June 2019	Full engine demonstration with increased compression ratio to quantify H ₂ benefit	On track

Approach

- Optimize the H₂ production of a dedicated EGR engine cylinder using available control authority
- Improve the H₂ production by adjusting the fuel chemistry to increase the H:C ratio and the chemical reformation potential
- Use the increased H₂ to enable an increase in compression ratio to yield a 20% reduction in petroleum consumption

Accomplishments

- Initial engine evaluations were made on an installed 2.0 L turbocharged and direct-injected gasoline engine at SwRI
- Cam phasing and injection strategies were investigated to extend the rich limit of the dedicated cylinder and optimize the H₂ production

Independent Variables	Range
Intake valve phasing [cam °]	0-32
Exhaust valve phasing [cam °]	0-32
Fuel injection	Production side-mount GDI or retrofitted PFI
GDI Injection pressure [bar]	20-200
Injection timing [°bTDC]	DI: single early (310), split 50:50 (310, 230), single late (260) PFI: 200
Fuel	Haltermann HEE (Tier 2)

POWERTRAIN ENGINEERING

Accomplishments – Cam Phasing

- A design of experiments study identified optimum cam phasing for H₂ production
- Results showed a modest dependence of enrichment potential with cam phasing which led to H₂ production improvement

Accomplishments – Injection Strategy

- Injection optimization yielded enrichment to 75% excess fuel and 8% H₂ production in the dedicated cylinder
- Slope of the H₂ / ϕ line indicates that the chemical path to H₂ was not impacted, only the degree of possible enrichment

Accomplishments – Injection Strategy

Late DI and split DI injection offered a significant increase in dedicated cylinder enrichment - maintained burn rates and COV of IMEP at highly enriched conditions

Accomplishments – Combustion Gains

- The increased enrichment and resulting increase in H₂ production enabled faster burn rates in the main (stoichiometric) cylinders
 - Enables increased dilution and / or increased compression ratio potential

POWERTRAIN ENGINEERING

Responses to Previous Comments

Due to cost share challenges, this project was not previously reviewed so there are no comments from past years to address

POWERTRAIN ENGINEERING

Collaborations

<u>Cost share partner</u> Engineering support and engine hardware to support test activities at SwRI

<u>Cost share partner</u> Engineering support and test fuels

Industrial interaction Industry feedback and parallel combustion system Development

🕽 Τοται

POWERTRAIN ENGINEERING

Remaining Challenges and Barriers

- Production of fuels with desired chemical composition using refinery outputs – goal is to demonstrate fuels which would be producible using current production processes
- Update of the test engine to permit higher compression ratios to realize the efficiency benefits brought by the new fuels – must balance compression ratio and chamber geometry to maintain combustion efficiency

Future Work

- FY18:
 - single cylinder fuel studies will identify the fuel chemistry impact on H_2 production
 - Production of refinery-blend fuels to confirm the findings of the simple fuel studies
 - Demonstration of compression ratio increase potential from $\rm H_2$ production
- FY19:
 - Demonstrate efficiency gains using the produced fuels in a multicylinder engine

Summary

- The performance of a dedicated cylinder on a D-EGR engine has been optimized for maximum enrichment and resulting H₂ production
- Enrichment was approximately doubled from the pre-project maximum found in earlier development work in the HEDGE II program
- H₂ production of up to 8% has been demonstrated, yielding a per-cylinder H₂ concentration of 2% for improved burn rates, dilution tolerance, and eventual compression ratio increase

