2018 DOE Vehicle Technologies Office

Next Generation SCR-Dosing System Investigation

Abhi Karkamkar
Pacific Northwest National Laboratory
June 20 2018

Project ID # ACS027

Project Overview

Timeline

- Start Oct 2014
- End Sept 18

Budget

- Matched 80/20 by USCAR as per CRADA agreement
- DOE funding for FY18: \$100K;

Barriers

Addressed in next slide

Partners

- Pacific Northwest National Laboratory
- USCAR

Selective Catalytic Removal of NO_x:

$$4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 6 \text{ N}_2 + 6 \text{H}_2 \text{O}$$

- SCR makes engines more efficient
- NOx reduction systems (SCR) will require improved ammonia storage and low temperature delivery.
- Needed for diesel and lean-burn engines
- Challenge: Safe and efficient ammonia storage and delivery
- Urea solution (DEFBlue or Adblue®) [Urea+ ~70% water] mitigates most issues
- New materials as needed to solve issues with aqueous urea
- Compact NH₃ storage coupled with long driving range will help minimize fuel consumption

NOx tail-pipe emission and USCAR FTP cycle

	USCAR FTP cycle
Total NH3	4.8 g
Avg. mass flow	3.1 mg/s
Peal flow	22.6 mg/s
Cycle length	1399 sec

Opportunity: Explore fuel economy improvement enabled by low-temperature dosing of ammonia gas.

Item	Unit	20 °C	-7 °C	-15 °C
Start time	sec	<90	<123	<152
Total energy requirement	kJ	64	98	107
Peak power requirement	kW	0.2/0.3	0.2/0.3	0.2/0.3

OEM

Development Teams and Suppliers

Project Management PNNL

USCAR

•Provide results of current performance metrics of various NH₃ storage materials and feedback on material performance

- Monthly updates and teleconference with USCAR PI
- Quarterly teleconference with USCAR SCR team
- Bi-annual F2F meeting with USCAR SCR team

PNNL

Carry out and disseminate results of synthesis, characterization, testing and provide recommendations to USCAR

Institute for INTEGRATED CATALYSIS

Goals and Objectives

- Develop alternative ammonia carrier materials for low temperature NH₃ dosing system
- 32.5 wt% aqueous Urea contains 17wt% NH₃ (gravimetric) and 200 kg/m³ (volumetric): Any proposed materials should exceed these targets.
- Help develop the next generation SCR dosing system for improved low-temperature performance
- Convenient handling and distribution of ammonia carriers, and reduced overall system volume, weight, and cost

FEV solid SCR system: Ammonium carbamate

Liquid urea (DEF)

Summary of material properties

Reviewer Comments

- Project needs to consider nonchlorine materials that will not produce hydrogen chloride (HCl)
- The simplest thing would be to increase the exhaust temperature and continue to use the eutectic mixture of urea in H₂O
- The project as a solid accomplishment to downselect material that can perform properly without significant increase in volume.

Response to Reviewer Comments

- HCI: We focused on efforts to switch to light weight metal oxides
- We studied the potential of a novel concept developed to enhance ammonia sorption
- We will continue to evaluate other oxide based materials for the remainder of the year

Vehicle Technologies Office

Approach

- Evaluate existing materials based on USCAR recommendations
- Synthesize new materials and composites to improve on existing materials

Develop testing protocol to:

- Determine ammonia storage capacity: wt.%/vol.%
- Determine ammonia release: temp, rate, energy requirement
- Solid material volume change during charge/discharge
- Stability and Safety: volatility under storage & handling conditions extended temp.
- Utilize expertise and state-of-the-art characterization and testing facilities at PNNL to address structure/function and performance
 - XRD, NMR, NH₃ TPD, DSC-TGA with MS
 - Time resolved FTIR studies for kinetics
 - Calorimetric studies for thermodynamics
 - Volumetric gas analyzer for vapor pressure studies

NATIONAL LABORATORY

CATALYSIS

10

Material (Quantity, g)	Time (hr)	Temperature (°C)	Amount of HCl (ppm)
MgCl ₂	3	400	~550
MgCl ₂	24	400	>600
MgCl ₂	24	400	>600
MgCl ₂	100	400	>600
MgCl ₂	24	400	~580
Mg(NH ₃) ₆ Cl ₂	24	250	20
MgCl ₂ :AC (2:1)	24	600	>600
Mg(NH ₃) ₆ Cl ₂ :AC (1:1)	24	400	No HCl
Mg(NH ₃) ₆ Cl ₂ :AC (1:1)	24	400	No HCl
Mg(NH ₃) ₆ Cl ₂ :AC (2:1)	24	250	No HCl
Mg(NH ₃) ₆ Cl ₂ :KBB (3:1)	24	250	No HCl

Successful mitigation of HCI by development of composites

DEFBlueTM Vs. MgCl₂.6NH₃

DEFBlue™

- 30% Urea +70% Water
- 200 kg NH₃/m³
- 17 wt% NH₃ (on composition basis)
- Convenient
- Freezing
- Solid deposits
- Lowering of exhaust temp due to water

MgCl₂.6NH₃

- $\sim 600 \text{ kg NH}_3/\text{m}^3$
- 50 wt% NH₃ (on composition basis)
- Multi-step decomposition
- No complex chemistry
- Easily available MgCl₂ (10% of sea salt) and NH₃
- Freezing a non-issue

Recent Accomplishments

- Characterize and Study the NH₃ uptake capacity of the Eutectic salts.
- In order to eliminate HCl we focused on developing oxide based materials
- Evaluated ammonia storage capacity of oxide based materials
- Synthesized and developed solid solution based materials for screening NH3 uptake and release

- •CO₂ absorption on MgO with NaNO₃
- •Decrease in temperature of CO₂ uptake
- •CO₂ absorption on MgO with various salts
- •Ability to tune temperature of CO₂ uptake

INTEGRATED CATALYSIS

MgO + Molten Salts to enhance capacity/kinetics

•Wt. Loss = 11.5%

•MgO + LiKNa Acetate

•MgO + LiKNa Acetate + NH₃

MgO + **Molten Salts**

MgO + Molten Salts

•MgO + CsNa Acetate

•Weight Loss = 44.32%

•CuCl₂

 $\cdot Cu(NH_3)_xCl_2$

Institute for INTEGRATED CATALYSIS

Material	% Weight Loss (TGA)
Mg-Ammine Chloride	51.84
Ca-Ammine Chloride	24.0
Sr-Ammine Chloride	11.9
Li-Ammine Chloride	48.7
Mn-Ammine Chloride	24.0
Co-Ammine Chloride	42.5
Ni-Ammine Chloride	38.6
Cu-Ammine Chloride	44.3

Purpose of Transition metal ammines

- a. Tune acidity
- b. Tune thermodynamics

Comparison of ammonia capacities of screened metal ammine complexes

Summary

- > Completed the synthesis and evaluation of several Eutectic and double salts.
- > Characterize and Study the NH₃ uptake capacity of the Eutectic salts.
- > Evaluated ammonia storage capacity of oxide based materials
- > Underway
 - Acidic oxide materials with and without solid solution
 - ☐ Impact of surface area and porosity of oxidic materials ammonia uptake