UF FLORIDA Lightweight High Temperature Alloys based on the AlFeSi System

PI: Dr. Michele Manuel, Co-PI: Dr. Richard Hennig

University of Florida June 20, 2018

Project ID: MAT069

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start Data: October 01, 2016

- End Data: December 31, 2019
- Percent Complete: 40%

Budget

- Total Project Cost: \$1,102,082
 - DOE share: \$991,873
 - Non-DOE share: \$110,209
- □ Funding received in FY17: \$342,611
- Funding for FY18: \$320,194

Project partners

Barriers

- Weight: Light-weight materials are needed for vehicle weight reduction in order to meet the future more stringent fuel economy standards
- Cost: Low-cost aluminum alloys with high-temperature properties are not available
- Fabrication: The τ₁₀-Al₄Fe_{1.7}Si phase has an extremely small composition range and a small fluctuation in composition will change the solidification path creating an unwanted microstructure

Relevance/Objectives

Project Objective:

UF

To develop low-cost lightweight τ₁₀-Al₄Fe_{1.7}Si based alloys that meet or exceed the high-temperature performance of more expensive Ni-based superalloys and titanium aluminides by combining alloy chemistry strategies and 3D additive manufacturing technologies

Relevance to Weight, Cost & Performance barriers:

- □ The high strength-to-weight ratio of τ_{10} makes it ideal for high temperature, lightweight applications
- All the three base constituents are available, abundant in nature, and low cost
- Additive manufacturing enable high cooling rate and can produce components to exact shape with no additional machining

Relevance

 τ_{10} -Al₄Fe_{1.7}Si Phase

Exceed the room temperature specific strengths of Al₃Fe, Ti and titanium aluminides

Very high strength/weight and thermal stability but little research

Relevance

- Extremely limited composition range
- Large number of competing phases at high temperature
- No longer a stable phase at room temperature (25 °C)

Needs either:

- Phase stabilization
- Non-equilibrium solidification

ASM Phase Diagram Center

Approaches:

- Expansion of the composition range by addition of minor alloying elements
- High cooling rate enabled by 3D laser printing

Milestones

Budget	Milestone	Planned Completion	Actual Completion	Percent Completion
Period 1	Quaternary systems down-selected: Identify potential quaternary solute elements that increase the composition range	Oct-17	Oct-17	100%
	Quaternary systems fabrication complete: Creation of arc melted buttons that have the potential to display a stable τ_{10} -Al-Fe-Si-X phase	Oct-17	Dec-17	100%
	Initial alloys delivered: Deliver alloys that have the potential to display a stable τ_{10} -Al-Fe-Si-X phase	Oct-17	Dec-17	100%
	Database of compound thermodynamics developed: Calculation and evaluation of solute components that stabilize the phase of interest while destabilizing competing phases	Oct-18		15%
Period 2	Solution modeling of phase stability ranges at high and low temperatures: Experimentally-validated thermodynamic models will be created that explain each the high temperature solubility and low temperature metastability in quaternary systems of interest	Oct-18		20%
	Chemistry list drafted: Creation of a list of chemistries suitable for powder processing via 3D printing	Oct-18		10%
	Production of powders: Production of powders in the quaternary systems of interest	Jun-19		
Period 3	Production of additively manufactured components: Production of mechanical test samples using additive manufacturing	Jun-19		
renou s	Calculation of elastic constants: Database of elastic constants for systems of interest completed	Jun-19		
	Chemistry list completed: List of chemistries are suitable for powder processing via 3D printing completed	Jun-19		

Approach/Strategy

- The overall objective of this project is to combine alloy chemistry and 3D laser printing to create phases with unusual properties
- Scope includes computational and experimental work, culminating in producing 3D laser sintered components for testing

Technical Accomplishments and Progress Task 1.0 – Screening of quaternary alloying additions A sorted list of elements that enhances the stability of the τ_{10} phase

- Inorganic Crystal Structure Database (ICSD) screening
- Al₁₀Fe₃Ni and Al₉Mn₃Si have the similar crystal structure to τ₁₀-Al₄Fe_{1.7}Si (P6₃/mmc)
- Ni and Mn were selected as promising quaternary additions

Technical Accomplishments and Progress Task 2.0 – Combinatorial arc melting and thermal analysis

Exploring the stable compositional range of τ_{10} -Al₄Fe_{1.7}Si

800 °C, 550 hrs

Technical Accomplishments and Progress

Task 2.0 – Combinatorial arc melting and thermal analysis

Measured stable compositional range of τ_{10} -Al₄Fe_{1.7}Si at 800 & 950 °C

Tasks 1 & 2 Milestone	Planned Completion	Actual Completion	Percent Completion
Quaternary systems down-selected: Identify potential quaternary solute elements that increase the composition range	Oct-17	Oct-17	100%
Quaternary systems fabrication complete: Creation of arc melted buttons that have the potential to display a stable τ_{10} -Al-Fe-Si-X phase	Oct-17	Dec-17	100%
Initial alloys delivered: Deliver alloys that have the potential to display a stable τ_{10} -Al-Fe-Si-X phase	Oct-17	Dec-17	100%

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

UF

Technical Accomplishments and Progress

Tasks 3.0 & 4.0 – Calculations of system energetics and entropic contributions

Gibbs free energy for the τ_{10} and completing Al-Fe-Si-X phases

Energy Calculations

- Used cluster expansion to generate various configurations
- Structures from Materials project and ICSD database
- Energy calculations with partial occupancies consideration
- Convex hull construction

Technical Accomplishments and Progress

Tasks 3.0 & 4.0 – Calculations of system energetics and entropic contributions

Energy Calculations

- Experimentally, $Al_{13}Fe_4$ phase along with τ_{10} in AlFeSi and AlFeNi systems
- Including Al₁₃Fe₄ in calculations pulled the convex hull down

Tasks 3 & 4 Milestone	Planned Completion	Actual Completion	Percent Completion
Database of compound thermodynamics developed: Calculation and evaluation of solute components that stabilize the phase of interest while destabilizing competing phases	Oct-18		20%

Technical Accomplishments and Progress Task 5.0 – Phase boundary exploration: diffusion couple

Exact solubility limit of the quaternary solutes in the τ_{10} phase

Solubility of Ni in τ_{10} -Al₄Fe_{1.7}Si at 800°C was determined to be 2 at.%

Technical Accomplishments and Progress

Task 5.0 – Phase boundary exploration: diffusion couple

800 °C, 336 h

Ni predominately replaces Si while the Al, Fe contents in the τ_{10} phase changes only slightly

Technical Accomplishments and Progress Task 5.0 – Phase boundary exploration: alloy verification

900 °C, 150 hrs

Alloys with 2 at.% Ni were confirmed to be the τ_{10} -Al-Fe-(Si, Ni) single phase

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

UF

Technical Accomplishments and Progress Task 5.0 – Phase boundary exploration: diffusion multiple

Al-Fe-Si-X (X = Co, Mn, Ni, Ti) diffusion multiples to accelerate the measurement of solubility limits of quaternary solutes in τ_{10}

16 Quaternary Systems:

AlFeSi/Fe/Co AlFeSi/Fe/FeMn AlFeSi/Fe/Ni AlFeSi/Fe/Ti AlFeSi/FeSi/Co AlFeSi/FeSi/FeMn AlFeSi/FeSi/Ni AlFeSi/FeSi/Ti

AlFeNi/Fe/Co AlFeNi/Fe/FeMn AlFeNi/Fe/Ni AlFeNi/Fe/AlFeSi AlFeNi/FeSi/Co AlFeNi/FeSi/FeMn AlFeNi/FeSi/Ni AlFeNi/FeSi/AlFeSi

Technical Accomplishments and Progress

Task 6.0 – Thermodynamic Modeling

Update the parameters for the Al-Fe-Si, Al-Mn-Ni and Al-Mn-Si ternary systems

Tasks 5 & 6 Milestone		Actual	Percent	
		Completion	Completion	
Solution modeling of phase stability ranges at high and low temperatures: Experimentally-validated				
thermodynamic models will be created that explain each the high temperature solubility and low	Oct-18		20%	
temperature metastability in quaternary systems of interest				17

Responses to Previous Year Reviewers' Comments

No previous year reviewers' comments are available

Partnerships and Collaborations

UF

Provided induction melted ingots and has participated in monthly and annual onsite meetings. The continually offer advice and recommendations on solute selection and alloy design

They will next be producing powders of our AlFeSiX alloy in late 2018 for additive manufacturing

Worked with beamline scientist to study site-lattice occupancy of elements within the τ_{10} -Al₄Fe_{1.7}Si. This information will be used to validate computational models

Remaining Challenges and Barriers

- The τ₁₀-Al₄Fe_{1.7}Si phase is a high temperature phase which is only stable between 727 and 997 °C. The high cooling rate (~10⁷ K/s - ~10¹³ K/s) enabled by 3D laser printing to selectively promote the solidification of τ₁₀ single phase. Therefore, the proper processing conditions for 3D laser printing need to be explored to control the solidification path without creating an unwanted microstructure
- High thermodynamic stability of competing phase add an extra layer of complexity as additional solute elements should stabilize the τ₁₀-Al₄Fe_{1.7}Si phase while de-stabilizing detrimental competing phases such as Al₁₃Fe₄
- High number of atoms in the system adds complexity to the cluster expansion simulations
- Partial occupancies present in the system a large number of potential configurations

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

UF

Future work

- Continue to expand the phase boundaries of the τ_{10} -Al₄Fe_{1.7}Si intermetallic phase with the addition of minor quaternary alloying elements
- Provide phase stability maps for the τ₁₀ and completing phases in the Al-Fe-Si-X system to inform sample preparation for 3D printing and mechanical testing
- Obtain a list of AlFeSiX chemistries that are suitable for powder processing via
 3D printing and have excellent high-temperature performance

Ongoing	FY 2018	Q4 Milestone (Tasks 3 & 4) — Database of compound thermodynamics developed: Calculation and evaluation of solute components that stabilize the phase of interest while destabilizing competing phases
		Q4 Milestone (Tasks 5 & 6) — Solution modeling of phase stability ranges at high and low temperatures: Experimentally-validated thermodynamic models will be created that explain each the high temperature solubility and low temperature metastability in quaternary systems of interest
		Q4 Go/No Go Decision Point — Chemistry list drafted: Creation of a list of chemistries suitable for powder processing via 3D printing
Proposed		Q4 Milestone (Task 7) — Production of powders: Production of powders in the quaternary systems of interest
		Q4 Milestone (Task 8) — Production of additively manufactured components: Production of mechanical test samples using additive manufacturing
		Q4 Milestone (Task 9) — Calculation of elastic constants: Database of elastic constants for systems of interest completed
		Q4 Go/No Go Decision Point —Chemistry list completed: List of chemistries are suitable for powder processing via 3D printing completed

Any proposed future work is subject to change based on funding levels

Summary

Project Objective:

To develop low-cost lightweight τ₁₀-Al₄Fe_{1.7}Si based alloys that meet or exceed the high-temperature performance of more expensive Ni-based superalloys and titanium aluminides by combining alloy chemistry strategies and 3D additive manufacturing technologies

Results:

UF

- \Box Al₁₀Fe₃Ni and Al₉Mn₃Si have the similar crystal structure to τ_{10} -Al₄Fe_{1.7}Si (*P*63/*mmc*)
- □ Co, Cu, Mn, Ni and Ti were selected as promising quaternary additions to expand the composition range of τ_{10} -Al₄Fe_{1.7}Si
- Regular solution model was used to determine the configurational entropy and included to the energy calculations. The data from regular solution model was compared to the data from the Monte Carlo simulations. This has been done for the Nb-Sn binary system as the concept of proof for the method
- □ The stable compositional range of the τ_{10} -Al₄Fe_{1.7}Si at 800 °C and 950 °C was determined to be Al-(24.3-25.5)Fe-(8.2-10.8)Si and Al-(24.6-25.2)Fe-(9.6-11.0)Si, respectively
- □ The solubility of Ni in τ_{10} -Al₄Fe_{1.7}Si at 800 °C and 850 °C was determined to be 2 at.% and 2.7 at.%, respectively, predominately replacing Si
- $\hfill \hfill \hfill$

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

Back-up Slides

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

Task 2.0 – Combinatorial arc melting and thermal analysis

Exploring the stable compositional range of τ_{10} -Al₄Fe_{1.7}Si

950 °C, 100 hrs

Task 5.0 – Phase boundary exploration: diffusion triple

Ni/Fe diffusion couple: 1050 °C, 310 h Ni/Fe/AlFeSi diffusion triple: 850 °C, 340 h

Solubility of Ni and Fe in τ_{10} -Al₄Fe_{1.7}Si at 850°C was determined to be 2.7 at.% and 27 at.%, respectively

Al-Fe-Si-X Diffusion multiple fabrication

Characterization & Analysis

Encapsulation & Annealing

Hot Isostatic Pressing (HIP)

Tasks 3.0 & 4.0 – Calculations of System Energetics and Entropic Contributions

Convex hull in Nb-Sn binary system to show proof of concept

Tasks 3.0 & 4.0 – Calculations of System Energetics and Entropic Contributions

Entropic contribution to energy for the Nb-Sn binary system

