Highly Integrated Wide Bandgap Power Module for Next Generation Plug-In Vehicles

Brian K. Peaslee, Principal Investigator General Motors, LLC 20 June 2018 DE-EE0007285

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start 1 January 2016
- Finish 30 September 2019
- 52% Complete

Funding

- Project Budget \$5.67 million
 \$3.79M Federal Share
 \$1.88M GM Cost Share
- 2017 funds received \$1.12M
- 2018 funding planned \$1.59M

Vehicle Technology Barriers

- Lower Cost Electric Drive Systems
- Higher Efficiency, long range EV
- Higher Performance and Lifetime
- Lower Mass and Volume

Project Team

• Lead:

General Motors, LLC

- Subrecipients:
 - Virginia Polytechnic Institute and State University

Oak Ridge National Lab

Monolith Semiconductor, Inc.

- Key Suppliers: Wolfspeed (Cree Power)
- Collaborations:
 PowerAmerica

GENERAL MOTORS

2

Project Relevance

Research Focus Area: Inverter

- WBG Semiconductor based power stage
- Technical development for key components needed for a WBG Power Stage: gate drive, capacitor, high bandwidth current sense

Objective

- Automotive power module with SiC MOSFET dies
- Reduce Inverter and Motor losses over the drive cycle
- Technology ready for long range BEV's with >600V battery
- Implement selected bonding, joining and thermal management technology to reduce thermal impedance, improve high temperature reliability and reduce volume

Addresses Targets

- Enable inverter to meet or exceed DOE 2020 targets:
- Power Density: 13.4kW/l; Specific power: 14.1kW/kg & \$3.3/kW
- Efficiency >94% (10%-100% speed at 20% rated torque)

Uniqueness and Impacts

Compact, high temperature, low inductance automotive package
GENERAL MOTORS

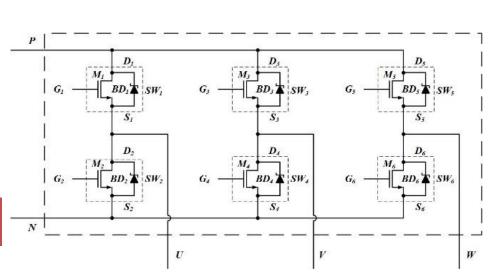
Milestones

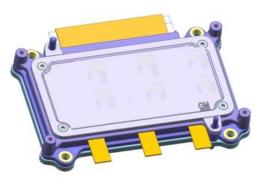
Date	2016-2017 Milestone or Go/No-Go Decisions	Status
Dec - 2016	Initial Power Module Design - Milestone	Completed
June - 2017	Power Module Detailed Design – Phase 2 Go/No-Go	Go
Dec - 2017	Prototype Manufacturing Process - Milestone	Completed
April - 2018	SiC MOSFET Final Builds and Die Tests - Milestone	Completed
June - 2018	Power Module Prototype Perf. – Phase 3 Go/No-Go	On-Track
Oct - 2018	Prototype Performance Test Completed - Milestone	On-Track

WBG POWER MODULE APPLICATIONS

Features

- Low conduction and switching loss
- Ultra-low parasitic inductances
- High switching frequency operation
- Normally-off device operation
- High temperature operation Tjmax=175°C
- High power high voltage power module


System benefits


- Reduced size and weight
- Compact design and inverter packaging
- High efficiency inverter
- Increased power density
- Improved thermal performance and packaging

Potential applications

- High efficiency converters Such as boost converter
- Traction power inverters

SiC Power Module Package

Functional Circuit

Technical Approach

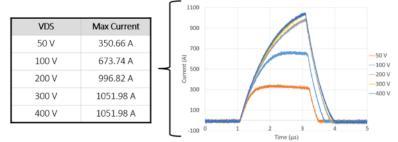
- This program will develop a highly integrated wide band gap automotive power module with smaller package, lower mass and higher efficiency
- Targets higher DC link bus voltage systems (e.g. 600-800Vdc) and maximum phase currents of 300Arms, 425Apk
- The high power density module utilizes SiC MOSFET dies in an advanced high performance package capable of high temperature operation
- Higher power density will be further enabled through the removal of the external diode by using the third quadrant operational capability of the SiC MOSFET
- Inventing a package with a low DC loop stray inductance path (<5nH) for the module
- Developing advanced current sensing and short circuit protection methods

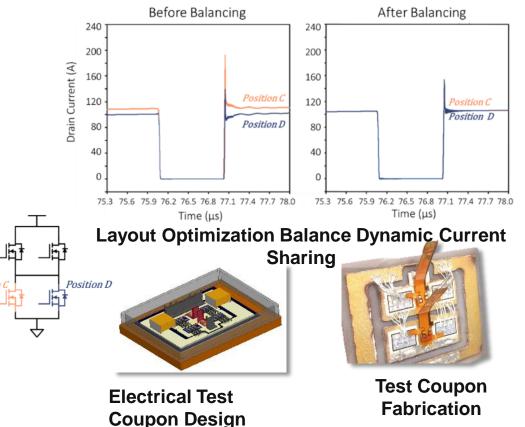
GENERAL MOTORS

Accomplishments: Sintering

- Sintering is selected as the attachment method to enable higher temperature operation and long-life reliability
- Both pressure and pressure-less sintering is being evaluated
- Coupons represent small substrates sintered to larger substrates
- Thermal cycling profile:
 - -40°C to 200°C
 - 10-15°C/min
 - 1 h/cycle.
- Die shear testing was used to evaluate mechanical performance
 - Shear strength was still >40 MPa after 1000 cycles
- SAM images show good performance after 500 cycles
 - No cracks in bond-line under device

SAM image of Pressure Sintering (10MPa) of Supplier A Sinter Paste after 500 Thermal Cycles – small cracks identified at edges, not under device

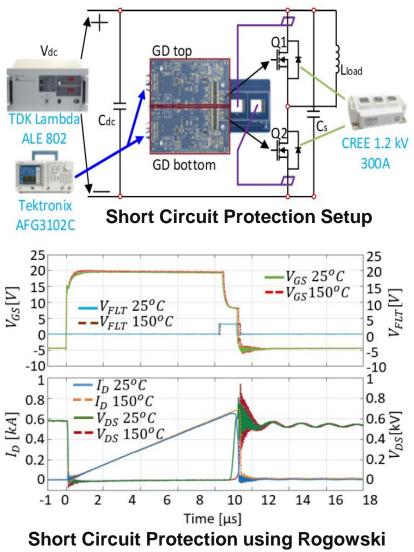

GENERAL MOTORS


SAM image of Pressure-less Sintering of Supplier B Sinter Paste after 500 Thermal Cycles – similar small cracks identified at edges however, none under device

Accomplishments: Electrical Tests

- Evaluation of the short circuit capabilities of the SiC die show good robustness to 2.5us
- Design optimization and fabrication of test coupon in a half-bridge configuration
- Cree 900V-10mOhm die sintered on AIN DBC Substrate
- Half-bridge configuration has <4nH stray
 inductance in the power Position loop and <1nH in the control loop

Short Circuit Evaluation of Device


GENERAL MOTORS

Performed by subrecipient: Virginia Polytechnic Institute and State University

8

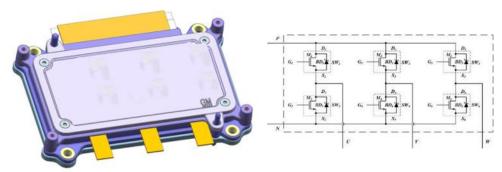
Accomplishments: Gate Drive Short Circuit Protection

- Developed short circuit protection method using Rogowski coil current sensing
- Improved response (200ns) over temperature vs traditional DeSAT protection methods
- Hard fault (i.e. shoot-thru) shows peak energy at device of 1J or less
- Load fault (e.g. motor winding short) shows peak energy of device of 0.1J or less

Coil Current Sensing under Load Fault

GENERAL MOTORS

⁹ Performed by subrecipient: Virginia Polytechnic Institute and State University


Accomplishments: Power Module Design

- Module inductance lower than the design targets
- Package Inductance targeted very low to achieve high level of performance
- Analysis predicts adequate thermal margin


V _{ds}	650 V	Lstray	2.6 nH
I _{rms}	300A	L cstray	2.0 nH
f _{sw}	30kHz	Ltotstrav	10.0 nH

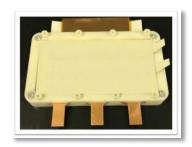
Phase 2 Power Module & Package Inductance

GENERAL MOTORS

Phase 2 Power Module Design

Phase 2 Power Module Thermal FEA Die Temperatures

Accomplishments: Manufacturing Process


- Completed the Bill-of-Materials (BOM) for the phase 2 prototype
- Completed the milestone for the prototype manufacturing processes and developed a detailed assembly process and instructions
- Concept prototype was built to refine component manufacturing processes and Design for Assembly (DFA)
- Received target die for use in the SiC MOSFET automotive power module
- Demonstrated successful sintering & wire bonding to target die

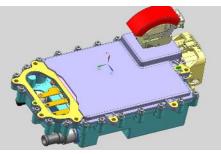
```
GENERAL MOTORS
```

				CHANICAL	BILL		0	F	Μ	ΑТ	ERI	ALS	(B0	M)]
			-	#				12010200							1
		Π	_	P B	•••••	•••	w	-		•••• *		*.*. · ·	* v	···· •	
12	÷	Þ		Refer Records				- Zalandii Za Kushu	E:						3/11/200
		H		laton adau Interio	to start that as faster			. Internet			state at ast				201020
-	÷.	Ħ	_		Rada Ra Casa		11122	7. 1.1111. 7. 1.1111.			2	128. Int 1844		1	1/11/210
	÷	H		lullum - To It Iolo	Hanana			2. Juille 2. Juille			2 and 2	4200011421	1		101101
=	÷	Ħ	=	Folo II Iolo Iollon - Iolo Ionio II Iolo	Hanna			7. 1.1111 7. 1.1111	÷	- <u>#</u>	1	4288611421 4288611421			1411411
	i.	Π			Bada Rocking Rocking and Alexandria	1.000	1122	2. 10100 2. 10100				Idi. Inc. one			20110230
	÷			liine In mat	Fair Kenda	Ē		. Talaulli	19						2011023
=	÷	Ħ	_	La and fall threaded	Fair Canto Infai			- Falandi B- Jalan							101021
				Leader paper											

Bill of Materials

Manufacturing Process Developed Concept Prototype Build

Assembly Process Detailed


Remaining Challenges Barriers & Future Plans

Challenges & Potential Barriers

- Power Module Yield during prototype phases
- High bandwidth low cost current sensing
- Gate Drive improvements: Three times faster short circuit protection than typical Si IGBT "De-Sat" protection schemes, High common-mode transient immunity (CMTI)
- Cost higher than DOE inverter targets that are Si IGBT based

Future Plans (FY2018)

- Power Module performance testing to targeted performance
- Build half bridge test coupon testing to verify electrical models
- Finish SiC inverter design concept

GENERAL MOTORS

Proposed future work is subject to change based on funding levels and Go/No-Go gate review

Summary

- Power Module Design Targets finalized
- Gate drive solutions for prototype testing evaluated
- Detailed design reviewed at Go/No-Go - Go!
- Design package footprint is about half the size of industry leading silicon IGBT power modules
- Package inductance, and thermal performance have been modeled & are below targets
- Prototype manufacturing process defined
- Project is progressing to phase three Fabrication & confirmation testing