

GMLC 1.4.2 – Definitions, Standards and Test Procedures for Grid Services from Devices

June 21, 2018 Washington, DC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

MIKE DUOBA, EV LEAD

Argonne National Laboratory

ROB PRATT, PI

Pacific Northwest National Laboratory

Overview

Timeline

- Project Start FY16
- Project End FY18
- Percent Complete: 33% of current year
- Percent Complete: 0% of FY18 (funds arrived in March for Project Year 3 start ~ Sep. 1, 2018)

Barriers

- Integrate device models into framework
- Framework to model range of grid services
- Characterization and test protocols developed to validate and further refine grid service studies

Budget

- All Labs FY16 FY18: \$6.5M
- ANL Funding for FY17: \$288k (model)
- ANL Funding for FY18: \$500k (test / validation)

Partners

Pacific Northwest National Laboratory
Argonne National Laboratory
National Renewable Energy Laboratory
Sandia National Laboratory
Oak Ridge National Laboratory
Lawrence Berkeley National Laboratory
Idaho National Laboratory
Lawrence Livermore National Laboratory

High Level Summary

Project Description

Enable a broad range of distributed energy resources (DERs) – to provide operational flexibility required by the power grid in the form of valuable grid services at the bulk system and local distribution levels.

Value Proposition

- ✓ Grid operators & planners can accurately assess the contribution of DER devices
- ✓ Encourages manufacturers to add capabilities to devices by articulating required performance & estimating potential value
- ✓ Level-playing field for modeling DER participation in planning & operations
- ✓ Battery-equivalent metric for grid flexibility
- ✓ Contribution of different DERs can be "summed"

Project Objectives

- ✓ High-resolution models of DER device classes including engineering, operational, & human constraints
- ✓ Standard battery-equivalent model interface applicable to all device classes
- ✓ Prototypical "drive cycles" for devices providing a wide variety of grid services
- ✓ Conduct trial analysis using models & drive cycles to exemplify device potentials
- ✓ Device characterization test protocols & conduct trials to validate models (water heaters, commercial refrigeration, EVs)
- ✓ Identify possible extensions to DOE appliance/equipment efficiency standard's test protocols to characterize important device parameters

Classes of Devices and Services

Devices (DERs)

Responsive, flexible end-use loads

- ▶ Water heaters
- ▶ Refrigerators
- ➤ Air conditioners
- ► Commercial rooftop units (RTUs)
- ➤ Commercial refrigeration
- Electric vehicles (charging only)
- ▶ Electrolyzers

Storage

- ► Battery / inverter systems
- ► Electric vehicles (full vehicle-to-grid)

Distributed generation

- ► Photovoltaic solar (PV) / inverter systems
- ► Fuel cells

Grid Services

- Peak load management (capacity)
- Energy market real-time price response (wholesale energy costs)
- Capacity market dispatch (market value)
- ► Frequency regulation (market value)
- Spinning reserve (market value)
- ► Ramping (new)
- ► Artificial inertia (new)
- ▶ Distribution voltage management (new; e.g., PV impacts management)

What is a Battery-Equivalent Model?

Battery-equivalent model of devices:

- ➤ Common, uniform means of representing properties of any DER device fleet as a "virtual battery"
 - In terms used to characterize battery/inverter systems
 - Extended with additional generalized properties & constraints needed to describe other types of DERs
 - Like a "virtual power plant" concept except more general
 - Generates
 - Stores
 - Consumes
- ► <u>Individual</u> discretely variable ("on/off") devices can't act in continuously variable way a battery does
- ► Fleets of such devices can do so

Power/Energy Balance and Power for Grid Services from a Generic DER

Power Balance:

$$P_{Grid}(t) = P_{Output}(t) + P_{Discharge}(t) - P_{Enduse}(t) - P_{Parastic}(t)$$

Power for Grid Service:

$$P_{Service}(t) = P_{Grid}(t) - P_{GridBase}(t)$$

; where *Base* indicates base case

$$P_{Service}(t) = \Delta P_{Discharge}(t) + \Delta P_{Output}(t) - \Delta P_{Enduse}(t) - \Delta P_{Parasitic}$$

; where Δ is the difference between the service case & base case

Architecture: Device & Fleet Models called by High-Level Model via Battery-Equivalent API

7

High-Level Model of Grid Planning or Operations

1. Requests power for service from fleet via API

Device Fleet Model

(N sub-fleets representing diverse population, each with uniform parameters, usage patterns, etc.)

- 2. Coordination: Allocates request to sub-fleets
- 4. Aggregates & returns fleet's current state:
 - Power delivered for service
 - Power injected into grid
 - Base case power injected into grid

Aggregates & returns constraints for next time step:

- Energy stored & total capacity
- Charge/discharge efficiencies
 Power, price, time constraints

Device Model (1 device · sub-fleet weighting factor)

3. Returns sub-fleet's current state (see 4)
Returns sub-fleet constraints for next time step
(see 4)

Device Model: Plug-in Electrified Vehicles (PEV)

Literature data of distributions employed

Device Model: Plug-in Electrified Vehicles (PEV)

Sub-Fleet Models Operate in Generic "Battery-Equivalent API"

Generic Battery-Equivalent API

GMLC 1.4.2 Grid Service Dispatch Algorithm & Drive Cycle **Battery-Equivalent API Battery-Equivalent API** Water Heater Fleet Model Aggregation Coordination WH Model Sub-Fleet S WH Model Sub-Fleet 1 **Supervisory Control Supervisory Control** (optional) (optional) **Local Control Local Control Physics Physics**

PEV Battery-Equivalent API Coordination Strategies

- Pricing (requires sub-fleet strike price info)
- Highest efficiency result Proportional charge level control
 - Random selection of on/off Other advanced predictive models

Project Team, Roles, Budgets by Lab

Project Participants and Roles			Project Funding			
Lab	Device Class	Grid Services	FY16	FY17	FY18	Total
PNNL		A. Peak load managementB. Artificial inertia/fast frequency response	\$351K	\$406K	\$196K	\$953K
NREL	 Water heaters PV/inverters 	C. Distribution voltage management / PV impact mitigation	\$226K	\$351K	\$508K	\$1,085K
SNL	3. Batteries/ inverters		\$106K	\$153K	\$0K	\$259K
ANL	4. Electric vehicles (DR, V2G)		\$141K	\$276K	\$508K	\$925K
ORNL	5. Com. HVAC6. Com. refrigeration		\$146K	\$308K	\$508K	\$962K
LBNL		D. ISO capacity market (e.g., PJM's) E. Regulation F. Spinning reserve G. Ramping	\$211K	\$225K	\$0K	\$436K
INL	7. Fuel cells 8. Electrolyzers		\$146K	\$158K	\$0K	\$304K
LLNL		H. Wholesale energy market price response	\$94K	\$154K	\$38K	\$286K
Totals			\$1,421K	\$2,031K	\$1,758K	\$5,210K

Key Project Milestones

Milestones* (FY16-FY18)	Status	Due Date
 Standard definitions & drive cycles for grid services (draft for industry review) General device model (draft for industry review) 	 Complete Complete 	October 1, 2016
3. Extrapolation procedure for performance of grid services	3. Complete	April 1, 2017
4. Project re-scoped (new negotiation template developed)	4. Complete	October 1, 2017
 5. Device model & battery equivalent interface software 6. Specify device characterization tests (for Year 3) 7. Recommendations re. additional tests or results from efficiency standards testing 	WORK IN PROGRESS	July 1, 2017
8. Report on grid services definitions & prototypical drive cycles, device models & battery-equivalent interface		October 1, 2018
 Grid services testing and model validation Final industry meeting of stakeholder groups 		April, 2018

Backup Slides

Data Flow between Device Model and Grid Service: the Battery Equivalent Model (API)

