UCR College of Engineering- Center for Environmental Research & Technology

Evaluating Energy Efficiency Opportunities from Connected and Automated Vehicle (CAV) Deployments coupled with Shared Mobility in California

P.I.: Matthew Barth, University of California-Riverside Partner: National Renewable Energy Laboratory June 18, 2018

DOE Vehicle Technologies Office 2018 Annual Merit Review and Peer Evaluation Meeting Project ID # DE-EE0008212 Project Number: EEMS032

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start date: 10/01/2017
- Project end date: 09/30/2019
- Percent complete: 30%

Budget

- Total project funding
 - DOE share: \$1,094,578
 - Contractor share: \$122,882
- Funding for FY 2017: N/A
- Funding for FY 2018: \$694,879

Barriers

- Measuring the transportation systemwide energy impacts of CAVs
- Determining the value and productivity derived from new mobility technologies
- Sourcing empirical real-world data applicable to new mobility technologies

Partners

- National Renewable Energy Laboratory
 - Jeff Gonder

Objectives

• **Project Objectives:**

- Evaluate energy efficiency opportunities from large-scale (e.g., regional or statewide) deployments of Connected and Automated Vehicles (CAVs) coupled with Shared Mobility
- Integrate existing and ongoing research on Shared Electric Connected and Automated (SECA) Transportation
- Investigate under a variety of roadway infrastructure, traffic congestion levels and market penetration rate
- Major focus on California
- Objectives over the past year (Oct 2017–Mar 2018):
 - Collection and processing of real world and simulation CAV data
 - Data collection from real world shared mobility applications
 - Development of model framework

Relevance

• This project addresses multiple VT Office/EEMS barriers by

- Quantifying the energy impact of disruptive transportation changes
- Identifying real-world data sources for SECA applications
- Investigating travel cost and travel behavior changes due to new mobility technologies

• Impact of the project:

- Close the knowledge gap on understanding potential system impacts of large-scale CAV technology deployments in the shared mobility era
- Reduce uncertainty in estimating energy saving opportunities from new mobility technologies
- Support policymakers in steering CAV and shared mobility development in an energy-favorable direction

Milestones

Milestone	Description	(Planned) Completion Date	Status				
TaFY 2018							
Data source identification and experiment setup complete	Data source identification and experiment setup complete	12/31/2017	Complete				
Collection and processing of LDV data complete	Complete collection and processing of LDV-No Automation real world data	3/31/2018	Complete				
Collection and processing of HDV data complete	Complete collection and processing of HDV-No Automation data and LDV simulation data	6/30/2018	Ongoing				
Assessment of Data Collection Complete	Determine if a sufficient amount of data have been collected to support model implementation	9/30/2018	Ongoing				
FY 2019							
Energy intensity (EI) model implementation	Complete implementation of models for estimating impacts on energy intensity by CAV technologies	12/31/2018	Ongoing				
Completion of Model Implementation/Validation	Determine if all models have received sufficient validation for supporting statewide energy inventory efforts	3/31/2019	Not started				
Framework Development	Complete the development of statewide energy inventory framework	5/30/2019	Ongoing				
Impacts Evaluation	Complete the evaluation of CAV-induced energy impacts in California	7/30/2019	Not started				

Approach – Data Collection and Processing

- Data from real-world CAV implementations
 - Field experiments and demonstrations
 - Early real-world deployments
- Data from micro-simulation
 - Multiple CAV applications
- Shared mobility data
 - Ride-hailing, ride-sharing and car sharing data from existing deployments
- Literature review
 - e.g. previous studies from SMART Mobility Initiative
- Data processing
 - Data cleaning and normalization
 - Categorized by traffic demand, penetration rate, effective area, etc.

Road-side signal control and communication system

Test vehicle and rada

Driver-vehicle interface

On-board DSRC and PC Onboard CV based speed advisory system

Approach – Modeling and Analysis

• Meso/Micro-scopic:

- Identify future transportation system scenarios in term of different SECA penetration and development levels
- Design a platform to accommodate all major SECA applications
- Estimate the impact of SECA on energy intensity and modal activity
- Evaluate the operation performance for each scenario and convert that to travel cost factors for travelers

• Macroscopic:

- Develop travel behavior model how travelers (grouped by demographics and trip purposes) value different travel cost factors and choose the mode
- Calculate the mode specific OD trip based on Southern California Association of Governments (SCAG) model
- Impact analysis on mobility and energy-efficiency
- Potential policies (e.g. occupancy based pricing) to mitigate the negative impacts

Early Field Deployments

- Safety Pilot Model Deployment (SPMD)
 - Ann Arbor, MI: 3000 vehicles with CV safety technologies
- Multi-Modal Intelligent Traffic Signal Systems (MMITSS)
 - Anthem, AZ: Vehicle trajectories and BSM files for safety applications
 - Redwood Road, UT: Transit Signal Priority to improve schedule reliability
 - Palo Alto, CA: Connected Vehicle Pilot Deployment
- Connected Vehicle Pilot Deployment Program
 - Wyoming, New York City, and Tampa
- Ongoing CAV deployment for heavy-duty vehicles
 - Los Angeles County, CA: Connected heavy-duty truck location and Electronic Control Unit (ECU) data from Eco-FRATIS and Volvo projects
 - Riverside, CA: Connected eco-bus data along the Riverside Innovative Corridor from ARPA-E NEXTCAR project

Example field experiments and demonstrations

Technology	Location	Communic ation	Energy Savings	Reference
EAD with Fixed Signals	Richmond, CA	4G/LTE	14%	Xia et al., 2012
	Riverside, CA	DSRC	11%-28%	Xia, 2014
	McLean, VA	DSRC	2.5%-18%	Xia, 2014
EAD with Actuated Signals	Riverside, CA	DSRC	5-25%	Hao et al., 2015
	Palo Alto, CA	DSRC	7%	Hao et al., 2018
EAD with Automation	McLean, VA	DSRC	10-20%	Altan et al., 2017

Micro-simulation

Eco-Approach and Departure (EAD) 10 – 25% energy saving
 Varying Performance in terms of penetration rate, traffic demand, facility type, etc.

19% energy saving

4.5% energy saving

4% for freight; ~6% for all

- Eco-Cooperative Adaptive Cruise Control
- Eco-speed harmonization
- Eco-signal priority

Lane Speed Monitoring (LSM), Emergency Electronic Brake Light (EEBL) and High Speed Differential Warning (HSDW) Mobility and safety benefits

Accomplishments – Initial Shared Mobility Data Collection

Example shared mobility datasets

Name	Туре	Location	Description
UCR IntelliShare	Car-sharing	Riverside, CA	A shared electric vehicles program
New York City Taxi Data	TNC included	New York City	Pick up/ drop off location and time
TNCs TODAY	TNC	San Francisco, CA	6-weeks data aggregated by time/zones
RideAustin	Ride-sharing	Austin, TX	Comprehensive ridership data
GAIA initiative	TNC	Chengdu, China	Trip information and vehicle trajectories

TNC datasets can show

- TNC trip distribution in term of location and time
- The % of zero passenger trips
- How zero passenger vehicles
 relocate

TNC datasets cannot tell

- Ride-pooling or not (occupancy)
- Mode shifting due to TNC travel (need to integrate survey response data)

If Not Uber or Lyft, Then What?*

Mode substitution, weighted by frequency of ride-hailing use

Source: UC Davis Institute of Transportation Studies

Accomplishments – Model Framework

Collaboration and Coordination with Other Institutions

- Partner: NREL
 - Support processing and analysis of CAVs-relevant data
 - Support model implementation and energy impact evaluation
- Collaboration with other universities and national labs
 - LBNL: Tom Wenzel
 - UC Berkeley: Susan Shaheen
- Collaboration with agencies and industry
 - Southern California Association of Governments
 - LA Metro
 - City of Riverside
 - City of Sacramento
 - City of Carson
 - Volvo Truck

Remaining Challenges and Barriers

- Difficulty in obtaining automated vehicle data from private companies
- Existing large-scale connected vehicle deployments are mainly for information or safety purposes
- Field data from various CAV experiments and deployments lack consistency and may only be applicable to their own specific scenarios
- Crowd-sourced data from shared mobility application provides an incomplete picture for before-and-after study comparison
- Difficulty in quantifying travel mode choices considering new mobility technologies
- The UCR and NREL Team will work together to address each of the identified challenges/barriers.

Proposed Future Research

- Complete collection and processing of CAV and shared mobility data
- Estimate the impacts on energy intensity due to deployment of CAV technologies on an individual vehicle basis, using the real-world datasets
- Develop new travel behavior modeling that is compatible with the new mobility technologies
- Synthesize the statewide energy inventory framework, taking into account the impacts from CAVs and shared mobility.
- Develop an analysis tool to evaluate the regional and/or statewide energy impacts
- Evaluate the potential effects of proposed policies to mitigate adverse energy outcomes

Summary

• This Project:

- Collects data from vehicles with CAV and shared mobility technologies (primarily deployed in California)
- Develops a comprehensive framework for evaluating energy efficiency opportunities from large-scale CAVs and shared mobility systems
- Addresses key barriers by quantifying the transportation system-wide energy impacts from new mobility technologies using real-world data
- Technical Accomplishments and Progress:
 - Collection and processing of CAV data from real-world experiments and early deployments, supplemented by simulation data
 - Archiving both crowd-sourced and survey data for shared mobility applications
 - Development of the proposed modeling framework
- Solid collaboration with universities, national labs, agencies and industry
- Future research to tackle remaining challenges

Thank You

Technical Back-Up Slides

Responses to Previous Year Reviewers' Comments

• No comments to respond to from last year as this is a new project