





# Enabling Lean and Stoichiometric Gasoline Direct Injection Engines through Mitigation of Nanoparticle Emissions

Will Northrop – Principal Investigator Annual Merit Review and Peer Evaluation Meeting June 19-21, 2018

Project ID: acs120

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# **Project Overview**

#### **Timeline**

Project Start Date: <u>10/1/2015</u>

Project End Date: <u>1/15/2019</u>

Percent Complete: 75%

#### **Budget**

Total Project Funding:

DOE Share = \$1,090,654

Contractor = \$221,113

FY 2017 Funding = \$262,892

FY 2018 Funding\* = \$148,262

\* through 5/1/2018

#### **Barriers** – ACEC Roadmap p.28,29

**Dilute Gasoline Combustion:** 

- "Particulate matter (PM) emission from dilute combustion gasoline engines is not fully understood."
- 2) "...both the engine-out and filter-out particulate mass and number need to be characterized."
- 3) "Determine effect of ethanol and fuel chemistry on particulate formation."

#### **Partners**







## Relevance/Objectives

#### Overall Objectives

- 1) Efficiently reduce particle <u>number</u> (PN) and particle <u>mass</u> (PM) emissions of lean and stoichiometric gasoline direct injection GDI engines used in light-duty vehicles to below established worldwide standards using a combination of fuel and lubricant properties and <u>aftertreatment</u> strategies.
- 2) Develop an accurate method for real-time PM measurement using suspended particle instruments.

#### Objectives in this Period

1) Evaluate an array of <u>oxygenated</u> fuels to see their systemic effects on PN/PM emissions from a GDI engine under lean and stoichiometric modes using advanced combined three-way catalyst (TWC) and gasoline particulate <u>filter</u> (GPF) aftertreatment.

# Milestones

|                                                   |           | Budget Period 1 |      |                 |      | Budget Period 2 |      |      | Budget Period 3 |      |      |      |      |
|---------------------------------------------------|-----------|-----------------|------|-----------------|------|-----------------|------|------|-----------------|------|------|------|------|
| Project Tasks, Milestones, and Go/No-Go Decisions | FY16      |                 |      | FY17            |      |                 |      | FY18 |                 |      |      |      |      |
|                                                   |           | Q2              | Q3   | Q4              | Q5   | ۵1              | Q2   | Q3   | Ω4              | ۵1   | Q2   | Q3   | Q4   |
| Commission Engine and Test Cell                   |           |                 | M1.1 | M1.2            | M1.3 |                 |      |      |                 |      |      |      |      |
| 2. Regimes of Interest for PM/PN Reduction        |           |                 |      |                 |      | D1.1            | M2.2 |      |                 |      |      |      |      |
| 3. Fuels/Lubricants with High Impact on PM/PN     |           |                 |      |                 |      |                 | M3.1 | D3.1 | M3.3            |      |      |      |      |
| 4. Synergies with Aftertreatment Technology       |           |                 |      |                 |      |                 |      |      |                 | M4.1 | D4.1 |      |      |
| 5. Validate Identified Strategies                 |           |                 |      |                 |      |                 |      |      |                 |      | M5.1 | D5.1 |      |
| 6. Develop RT PM Measurement Techniques           |           |                 |      |                 |      |                 |      |      |                 |      |      |      | M6.1 |
|                                                   | Completed |                 |      | To be Completed |      |                 |      |      |                 |      |      |      |      |

### **Approach**

FY18: Determine Fuel and Lubricant Impact on lean GDI

FY19: Validate Fuel/Aftertreatment Strategy, Real-Time PM



**Task 1:** Engine test stand and all instruments and aftertreatment installed and commissioned in FY17

| Model Number            | BMW - N43B20        |
|-------------------------|---------------------|
| Displacement (cc)       | 1995                |
| Bore x Stroke (mm)      | 84 x 90             |
| Compression Ratio       | 12:1                |
| Rated Power (kW)        | 125 @ 6700 rpm      |
| Rated Torque (Nm)       | 210 @ 4250          |
| Induction               | Naturally Aspirated |
| Injection               | Central Piezo       |
| Max Rail Pressure (bar) | 200                 |





**Task 2:** Fuels selected and characterized over range of lean/stoichiometric engine conditions and transient step changes

Engine conditions tested: S = Stoichiometric, LH = lean homogenous, LS = Lean stratified

| Condition    | Speed | BMEP  | Mode | (0)         |  |
|--------------|-------|-------|------|-------------|--|
|              | (rpm) | (bar) | Mode | φ           |  |
|              |       |       | S    | 1.0         |  |
| SS 1         | 1400  | 2     | LH   | 0.67        |  |
|              |       |       | LS   | 0.5         |  |
| SS 2         | 2000  |       | S    | 1.0         |  |
|              |       | 4     | LH   | 0.65        |  |
|              |       |       | LS   | 0.65        |  |
| SS 3         | 2000  | 7     | S    | 1.0         |  |
|              |       | /     | LH   | 0.69        |  |
| SS 4         | 2400  | 7     | S    | 1.0         |  |
|              |       | /     | LH   | 0.73        |  |
| Load steps   | 2000  | 2-7   | S    | 1.0         |  |
|              | 2000  | Z-1   | LH   | 0.73 – 0.67 |  |
| Engine start | 1000  | 0     | S    | 1.0         |  |

PM Index calculated from GC-MS analysis of fuels

$$PM\ Index = \sum_{i=1}^{n} \left( \frac{DBE_i + 1}{P_{vap,i}(443K)} \times Wt_i \right) \quad [1]$$

| Fuel ID  | Arom. (%) | T90 (°C) | AKI  | EtOH (%) | PM Index |  |
|----------|-----------|----------|------|----------|----------|--|
| Baseline | 27.0      | 162      | 90.8 | 9.9      | NA       |  |
| A-1      | 22.4      | 160      | 90.9 | 9.9      | 1.19     |  |
| A-2      | 42.9      | 166      | 92.6 | 9.9      | 1.77     |  |
| V-1      | 29.9      | 129      | 90.8 | 9.9      | 0.70     |  |
| V-2      | 29.4      | 178      | 91.7 | 10.0     | 2.16     |  |
| E15      | 28.5      | 160      | 93.6 | 15.2     | 1.37     |  |
| E50      | 16.7      | 160      | 96.3 | 50.0     | 1.09     |  |

**Task 3:** Fuel screening experiments performed to determine the effect of fuel properties on particle emissions

PM Index - good correlation to stoichiometric conditions but not for lean GDI

High ethanol (E50) produced excessive PM/PN in lean homogenous modes



Task 3: In-cylinder luminosity to determine PM formation causes in lean GDI



- 24 fiber optic channels light intensity
- Premixed homogeneous combustion follows in-cylinder pressure trace
- Soot formation occurs in diffusion flames, which incandesce due to soot oxidation
- Diffusion flames are spikes in the light intensity during the expansion stroke





# **Task 4:** GPF/TWC aftertreatment installed and characterized

 Determining effectiveness over entire fuel and engine operating condition matrix underway





**Task 6:** Centrifugal particle mass analyzer used to characterize particle density as function of particle diameter

 Can be used for conversion of particle number to mass in real-time

# Response to Previous Comments

This is the first year the project has been presented

# Partnerships/Collaborations





- Technical guidance, production vehicle relevance
- Aftertreatment system components



- Technical guidance, fuel products relevance
- Fuels and lubricants with detailed properties



#### **Collaborators**

- Cycle-to-cycle in-cylinder soot production
- Periodic discussion of BMW N43 engine results



In-cylinder Visiolution diagnostics support and collaboration

# Remaining Challenges and Barriers

- High solid sub-23 nm diameter nanoparticle concentration unexpected – thought to be ash originating from lubricating oil (Task 3)
- Fuels, lubricants and aftertreatment combinations for meeting worldwide PM/PN regulations for lean and stoichiometric GDI engines incomplete (Task 4)
- Transient segments of driving cycles representative of high PN/PM emissions regions not identified (Task 5)
- Effective density measures not consistent across fuels and engine operation to convert PN to PM (Task 6)

### **Proposed Future Research**

#### To be completed in FY18/FY19(Q1):

- Detailed characterization of solid nanoparticles in lean GDI modes
  - Correlation with existing knowledge of PM/PN for stoichiometric GDI
  - Sources within combustion chamber using flame luminosity
  - Effect on GPF aftertreatment
  - Fuel-dependent soot oxidative reactivity
- Transient cycle segment experiments including GPF aftertreatment
- Effective density correlations across fuel and operating conditions

#### Future\*:

University of Minnesota and its partners will seek additional funding to continue research on nanoparticle characterization from lean GDI/GDCI engines in support of ACEC Dilute Gasoline Combustion Roadmap

\*Any proposed future work is subject to change based on funding levels

#### Thank You

#### **Will Northrop**

University of Minnesota wnorthro@umn.edu http://www.merl.umn.edu