

## **BATTERY RECYCLING MODELING**

Project ID # bat342

PI: Michael Wang

Co-PI: Jeff Spangenberger

Team Members: Shabbir Ahmed, Qiang Dai, Linda Gaines, Jarod Kelly

Argonne National Laboratory

2018 DOE Vehicle Technologies Office Annual Merit Review

> June 19, 2018 Arlington, VA

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## **OVERVIEW**

#### **Timeline**

- Project start date: July 2017
- Project end date: to be added
- Percent complete to be added

#### **Barriers**

- Barriers addressed
  - To be added

#### **Budget**

- Total project funding: \$250
  - DOE share: 100%
- Funding for FY 2017: \$125
- Funding for FY 2018: \$125

#### **Partners/Interactions**

To be added



## RELEVANCE

#### **Objective of Argonne Battery Recycling ("ReCell" Model)**

- Advancement of ANL's baseline high-level, closed-loop battery recycling model that was developed in FY17 using internal LDRD funding
- ReCell quantifies energy, environmental, and economic impacts of battery manufacturing and close-loop recycling
- Addition of high nickel cathodes (NCA and NMC 811) to the baseline model
- Increase the accuracy of the model by working with battery recyclers to obtain more detailed process information.
- Compare virgin batteries to those with recycled content
  - For varied chemistry, design, plant size, utilization, etc.
  - Identify trade-offs
  - Enable customization for user-specific needs



## RELEVANCE

#### Impact of ReCell Model

- Capability to guide battery manufacturers and OEMs in their decision making towards recycling
- Provides insight into impacts of LIB recycling and other process steps to allow stakeholders to simulate and visualize cost and environmental impacts
- Enable direction of battery recycling R&D towards optimization of both process specific, and overall, economic, energy, and environmental impacts
- Facilitates Design for Recycling (DFR) analyses.
- Other companies/organizations have shown interest in use/customization



# **MILESTONES**

| ACTIVITY                             | PLAN START | PLAN     | Jul | Aug |   | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun |
|--------------------------------------|------------|----------|-----|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                                      |            | DURATION | 1   | 2   | 3 | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
| NMC/NCA Addition                     | 1          | 2        |     |     |   |     |     |     |     |     |     |     |     |     |
| NMC/NCA added to current model       | 2          | 1        |     |     |   |     |     |     |     |     |     |     |     |     |
| Model Improvement                    | 3          | 10       |     |     |   |     |     |     |     |     |     |     |     |     |
| Model completed                      | 9          | 1        |     |     |   |     |     |     |     |     |     |     |     |     |
| Model documentation                  | 10         | 1        |     |     |   |     |     |     |     |     |     |     |     |     |
| Demonstration Communication          | 12         | 1        |     |     |   |     |     |     |     |     |     |     |     |     |
| Stakeholder Interaction              | 1          | 12       |     |     |   |     |     |     |     |     |     |     |     |     |
| Documentation of all learnings       | 12         | 1        |     |     |   |     |     |     |     |     |     |     |     |     |
| Lithium-Sulfur Prelim. Investigation | 4          | 3        |     |     |   |     |     |     |     |     |     |     |     |     |
| Report on prelim. Findings           | 6          | 1        |     |     |   |     |     |     |     |     |     |     |     |     |





# **APPROACH**

#### ReCell MODEL FLOW





# **APPROACH**

- The ReCell model, linked to BatPaC and GREET, is designed with industry-wide generic recycling technology paths and unit process
- Provides flexibility for individual companies to modify the model to add companyspecific technologies and processes.
- Format: Excel-based
- Input
  - As few as several high-level information (less than 10 input parameters to run the recycling module)
  - As many as detailed process/equipment specific information (hundreds of input parameters for the recycling module)
- Output
  - Cost
  - Environmental impacts: energy consumption, water consumption, air emissions



# **OUTPUTS FROM GREET AND BatPaC**

# **Become inputs to ReCell**

#### BatPaC and Process Models

- Inventory of materials in battery pack
- Cost of cells, battery pack
- Cost contribution from processing steps in manufacturing plant
  - Material and energy needs and costs
  - Investment for capital equipment
  - Cost contributions to pack cost

#### **GREET**

- Life-cycle impacts from material production
  - Energy use, by type
  - CO<sub>2</sub> emissions
  - Criterial pollutant emissions
  - Water consumption
- Fuel production upstream burdens



# **MODEL INPUTS**

## Default inputs are used as a starting point



General

Labor cost

Material cost

Utility costs

Equipment

Plant Life



Battery Production

Throughput

Chemistry

Format

Location



Collection

Distance

Classification

Mode



Recycle

**Process** 

Throughput

Chemistry

Location



Cathode Manufacture

Throughput

Chemistry

Location



# **MODEL INPUTS**

# **Default inputs are easily changed**

| Basic Inpu                                                | ut             |           |    |  |  |
|-----------------------------------------------------------|----------------|-----------|----|--|--|
|                                                           |                |           |    |  |  |
| Manufacture (click to link)                               |                |           |    |  |  |
| Throughput                                                | tonne/yr       | 6,65      | 0  |  |  |
| Chemistry                                                 | N/A            | NMC(811)  |    |  |  |
| Format                                                    | N/A            | Prismatic | Go |  |  |
| Geographic location                                       | N/A            | U.S.      |    |  |  |
|                                                           |                |           |    |  |  |
|                                                           |                |           |    |  |  |
| Collection & Transporta                                   | tion (click to | o link)   |    |  |  |
| From end use to collection                                | Miles          | 20        |    |  |  |
| From collection to recycler                               | Miles          | 1,000     | )  |  |  |
| From manufacturer to recycler                             | Miles          | 500       | )  |  |  |
| From recycler to cathode producer                         | Miles          | 500       | )  |  |  |
| From cathode producer to manufacturer                     | Miles          | 500       | )  |  |  |
| Include shipping manufacturing scrap material to recycler | N/A            | No        |    |  |  |
| Include shipping rejected cells to recycler               | N/A            | No        | Go |  |  |

# **MODEL OUTPUTS**

# Output includes additional details and depends on assumptions

|                                       | Virgin      | Manufacture with recycled materials |       |        |  |  |  |  |
|---------------------------------------|-------------|-------------------------------------|-------|--------|--|--|--|--|
|                                       | Manufacture | Pyro                                | Hydro | Direct |  |  |  |  |
| Cost<br>(\$/kg cell produced)         | 43.18       | 40.40                               | 37.60 | 31.63  |  |  |  |  |
| Total Energy<br>(MJ/kg cell produced) | 152         | 135                                 | 140   | 91     |  |  |  |  |
| Total Emissions (g/kg cell produced)  |             |                                     |       |        |  |  |  |  |
| VOC                                   | 1.8         | 1.8                                 | 1.8   | 1.0    |  |  |  |  |
| NO <sub>x</sub>                       | 17.7        | 18.4                                | 14.8  | 8.8    |  |  |  |  |
| PM <sub>10</sub>                      | 5.3         | 3.2                                 | 3.0   | 2.3    |  |  |  |  |
| SOx                                   | 295         | 88                                  | 92    | 56     |  |  |  |  |
| CO <sub>2</sub>                       | 9457        | 13600                               | 8702  | 5433   |  |  |  |  |



### TECHNICAL ACCOMPLISHMENTS AND PROGRESS

- Evaluated the economic benefit of cell produced from recycled cathode
  - for different lithium-ion battery chemistries
  - for different recycling technologies

#### Cell Production Costs (\$/kg cell produced)



- Translated technology parameters into cost and environmental impacts
  - Unit cost and environmental impact decreases as more material is recovered
  - Below 40% yield, recycled material costs more than virgin







Compared cost breakdown for various recycling processes

- High plant capital cost is largest contributor
- Materials are significant input for hydro
- Byproduct credits not included





- Evaluated the impact of transportation cost on the overall cost of battery recycling
- Lithium-ion battery currently classified as Class 9 hazardous material in the U.S.
  - This classification increases the cost of recycling

#### **Transportation and Recycle Cost Breakdown**





\$1.00

\$2.00

\$3.00





- Evaluated the impact of process scale-up on recycling cost
  - Recycling cost reduces as scale of recycling plant reduces
  - This will reduce the cost of battery production with recycled cathode





- Evaluated the consequences of business decisions and market dynamics
  - Geographic location, plant capacity, and battery chemistry will impact profitability of recycling

One 7,000 t/yr plant in U.S., recycling 100% NMC(111) via hydro

Battery feed changed to 50% NMC(111) and 50% NCA

Same new plant in China

Five 1,400 t/yr plant in U.S., recycling 100% NMC(111) via hydro



# RESPONSES TO PREVIOUS YEAR'S REVIEWERS' COMMENTS

This project has not been reviewed

# COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

Collaboration with industry has been key to gaining accuracy of the model

# REMAINING CHALLENGES AND BARRIERS

Continued identification of real-life process data is very difficult to obtain due to company secrecy.

# PROPOSED FUTURE RESEARCH

- Add lithium-sulfur battery manufacturing and recycling information to the recycling model for preliminary evaluations.
- Continue communications with industry/academia/government agencies
- Improve data accuracy
  - As detailed recycling process information is obtained, it will be included in GREET and linked to ReCell Model
- Characterize variants of hydrometallurgical processes (including direct recycling, using no acid or base)
  - Of interest are conditions under which the cathode crystal structure can be retained and possibly reused in rejuvenated cathode material
- Improve user experience of the Model
  - Stakeholder input will be used to make the model more user friendly and to help identify additional areas for improvement



# **SUMMARY**

#### ReCell:

- Accelerates development of sustainable recycling processes
  - Enables direction of R&D to highest potential impact areas
- Evaluates cost and environmental impacts for each unit process
  - And aggregates to entire life-cycle
- Compares virgin batteries to those with recycled content
  - For varied chemistry, design, plant size, utilization, etc.
  - Identifies trade-offs
  - Can be customized for user-specific needs

