

Daikin Advanced Lithium Ion Battery Technology –

High Voltage Electrolyte

Joe Sunstrom, <u>Alec Falzone</u>, Ron Hendershot, Abundio Sandoval, Emily Grumbles, Melissa Costa

> Daikin Technical Center, Decatur, Alabama DOE Annual Merit Review June 20, 2018

> > **Project ID: ES312**

This presentation does not include proprietary, confidential or otherwise restricted information

Overview

Timeline

- Start Date: 10/1/16
- End Date: 9/30/19
- 50% Complete

Target and Barriers

- Performance 300-1000 cycles at 4.6 V
- Failure mechanisms at high voltage

Budget

- Total \$1,826,895
 - DOE \$1,250,000
 - Daikin America \$576,895
- Expenditure of Gov't Funding — FY2017 524 K
 - FY2018 ~ 291 K (estimate)

Partners

Interactions/Collaborations
 None (2017)

Project Objective: to develop a stable (300 – 1000 cycles), high-voltage (up to 5 volts), and safe (self-extinguishing) formulated electrolyte.

• <u>Performance Objective</u>

- Understand mechanisms for cell failure via electrolyte
- Propose electrolyte solvent systems through DOE methods for high voltage battery systems. This includes optimization of additives
- Optimize additive packages for increased cycle life

• Impact to DOE VT mission

- Electrolytes which facilitate stable high voltage cycling of lithium ion batteries present a pathway to higher energy batteries.
- Higher energy batteries enabled by simple material substitution not only positively impact gravimetric and volumetric energy density targets but also are beneficial towards DOE cost targets (wH/\$)

Milestones - 2017

Task	Task or Subtask	Milestone	Milestone Description	Milestone Verification	Status
Number	Title	Туре	(Go/No-Go Decision	Process (What, How,	
(Q)		(Milestone or	Criteria)	Who, Where)	
		Go/No Go			
		Decision			
		Point)			
1.1	Establish baseline	Milestone	Establish current	Report profile	Complete
	and review current		physical and	performance of current	
	state of art		performance baselines	best electrolyte in	
			for fluorinated	baseline cells	
			electrolyte		
1.2	Gas composition	Milestone	Gas composition as	Understand changes in	Complete
			function of voltage and	gas composition with	
			cathode surface	changing chemistry and	
				conditions	
1.3	Gassing kinetics of	Milestone	Gassing dynamics of	Study pathway and	Complete
	FEC		FEC	kinetics of FEC	
				decomposition	
1.4	Gas kinetics based	Go/No Go	Gassing as function of	Determine if gassing can	Complete
	on cathode surface		metal ratio in cathode	be minimized through	
	composition			electrolyte composition	

Milestones - 2018

Task Number (Q)	Task or Subtask Title	Milestone Type (Milestone or Go/No Go Decision Point)	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process (What, How, Who, Where)	Status (completion date)
2.1	Film Thickness vs time/voltage	Milestone	Film thickness at different voltages and time	Determine film growth parameters via surface techniques	In progress (12/31/18)
2.2	Film composition vs time/voltage	Milestone	Rough elemental chemistry of film over time	Determine elemental composition via surface techniques	In progress (12/31/18)
2.3	Film composition vs time/voltage	Milestone	Detailed chemistry of film over time	Understand how film is formed by TOF-SIMS	In progress (12/31/18)
2.4	Battery thickness (non-gas) vs. time/voltage	Milestone	Make real time thickness measurements and relate back to individual electrodes	Determine if film growth can be controlled through chemistry	In progress (12/31/18)
2.5	Submit current optimized cells to DOE for evaluation	Go/No Go	Fabricate interim cells for evaluation by DOE	Testing at DOE laboratory to determine if target is met	

Milestones - 2019

Task Number (Q)	Task or Subtask Title	Milestone Type (Milestone or Go/No Go Decision Point)	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process (What, How, Who, Where)
3.1	Metal dissolution vs. time/voltage	Milestone	Finish chemical analysis of electrodes	Relate chemistry of electrode to performance
3.2	Cathode surface structure vs. time/voltage	Milestone	Determine cathode surface structure on cycling	Assess role of fluoro chemicals in protection of cathode surface
3.3	Compilation of phenomena/perform ance data and selection of new electrolyte composition	Milestone	Compile and combine data to determine solitary and combined interactions of phenomena with performance	Rank the effect of hypothesized failure modes with respect to electrochemical performance
3.4	Submit final cells and report to DOE	Go/No Go	Fabricate cells containing improved electrolyte based on study of failure mechanisms	Submit final report and cells for testing

<u>Target</u>

Development of a stable (300 - 1000 cycles), high-voltage (4.6 V), and safe (self-extinguishing) formulated electrolyte through understanding of current electrolyte failure mechanisms

Approach

- •Year 1 Understand causes and nature of gas generation in high voltage cells and it's impact on electrochemical performance.
- •Year 2 Observe and quantify SEI films formed on electrodes as they relate to reduced gas generation
- •Year 3 Explore other failure points in the high voltage batteries which are not related (dissolution, xtal structure changes...etc). Propose solutions to achieve above target

Technical Approach - Schedule

Schedule has been modified due to complexity of surface measurements

Oct-16 Apr-17 Oct-17 Apr-18 Oct-18 Apr-19 Oct-19

Technical Milestone Go/No Go Milestone

FY17 Technical Accomplishments – Resource Increase

- Hiring and training of additional project staff (postdoc, 2 co-op students)
- Lab equipment build out

Gas Composition as a Function of [FEC], Nickel, and Voltage Milestone 1.2

- Initial gas analysis and method development was performed on calendar aged LCO and NMC622 cells at 4.6V
- Hydrocarbon (CH₄, C₂H₆, C₂H₄), Fluoro-hydrocarbon (CH₃F and C₂H₅F), and Permanent gases (O₂, H₂, CO₂, and CO) are present

DAIKIN

DAIKIN AMERICA INC. 10

Gas Composition as a Function of [FEC], Nickel, and Voltage – Milestones 1.3 and 1.4

[FEC]	CH ₄	C_2H_2	C_2H_4	C_2H_6	C_3H_6	C_4H_{10}	CH₃F	C_2H_5F	со	CO ₂	02	H ₂	PF ₃
LCO 10%	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
LCO 20%	Х	Х		Х		Х	Х	Х	Х	Х	Х		
NMC111 10%	Х		Х	Х			Х	Х	Х	Х	Х	Х	
NMC111 20%	Х		Х	Х			Х	Х	Х	Х	Х	Х	
NMC532 10%	Х		Х	Х			Х	Х	Х	Х	Х	Х	
NMC532 20%	Х		Х	Х			Х	Х	Х	Х	Х	Х	
NMC622 10%	Х		Х	Х			Х	Х	Х	Х	Х	Х	
NMC622 20%	Х	Х		Х			Х	Х	Х	Х	Х	Х	

Qualitative Gas Composition Table at 4.6 V

- Higher hydrocarbons (C₃H₆ and C₄H₁₀) are limited to LCO cells
- Fluoro-hydrocarbons are present at higher voltage > 4.5 indicating breakdown of fluorinated components in electrolyte
- Quantification of gases is currently in progress (CH₄, C₂H₆, C₂H₄, CO, CO₂, H₂, and O₂)

Gassing Kinetics as a Function of [FEC], Nickel, and Voltage – Milestone 1.3 and 1.4

- The majority of gas produced was observed within the first 5 days of a calendar life test at 55 °C
- Gas generation can be correlated to the observed OCV drop indicating cathode reduction
- LCO and NCA generated more gas than cells with NMC cathodes (622, 532, and 111)

DAIKIN AMERICA INC. 12

Gassing Kinetics at 4.2, 4.5 and 4.6 V – Milestone 1.3 and 1.4

DAIKIN AMERICA INC. 13

Gassing Kinetics as a Function of [FEC], Nickel, and Voltage – Milestone 1.3 and 1.4

- Increasing the amount of FEC in the electrolyte leads to better performance at 4.5 and 4.6V. However, it also increases the amount of gassing.
- NMC111, 532, and 622 have similar performance in terms of gassing and OCV loss at 4.5 and 4.6V.
- LCO and NCA exhibit significant gassing at high voltage. Sources of this accelerated gassing are being determined

Cathode	OCV Retention at 4.2V (%)	OCV Retention at 4.5V (%)	OCV Retention at 4.6V (%)		
LCO	98.0	81.2	82.4		
NMC111	96.9	94.6	93.0		
NMC532	97.1	94.7	93.3		
NMC622	97.6	94.4	94.0		
NCA	97.8	93.2	91.8		

20% FEC (v/v) at 55 °C

FY17 Technical Accomplishments – cycle performance

Cycle performance to 4.6 V as a Function of [FEC] and cathode nickel content– Milestone 1.3 and 1.4

- Cycling experiments performed at r.t. at 0.7C with CC charge/CC discharge
- FEC is necessary at 4.6V, 15% (v/v) minimum

Cell Energy as a Function of [FEC], Nickel, and Voltage – Milestone 1.3 and 1.4

- The addition of FEC at cells cycled at 4.2V did not result in increased performance
 - FEC offers a significant performance boost at 4.6V, with NMC111
 (38.8%) and NMC622
 (67.8%) yielding the greatest increase in specific energy

DAIKIN AMERICA INC. ¹⁶

FY18 Technical Accomplishments – film composition

Film Composition (Elemental) as a Function of [FEC], Nickel, and Voltage – Milestone 2.2

Post-Sputter Elemental Maps of Co (blue), O (lime), F (red, and C (yellow) of a 4.5V LCO Cell Cycled at .7C

- Auger Electron Spectroscopy (AES) will be one avenue utilized to measure the SEI layer composition and thickness
- Carbon is a significant contributor to the SEI layer's elemental composition
- Fluorine is present from multiple sources in both the SEI layer and cathode material

DAIKIN AMERICA INC. 17

FY18 Technical Accomplishments – film thickness

SEI Layer Analysis: Thickness and Composition – Milestone 2.1 and 2.2

 Various thicknesses of amorphous carbon samples will be used to calibrate the sputter gun (AES), which will allow us to accurately measure the SEI thickness and elemental composition

SEM images of 500 Å (left) and 5000 Å (right) thick amorphous carbon films

Estimated completion date 12/31/18

- Complete surface analysis to quantify thickness/composition of electrode films
 - In house EDS measurements with external sample preparation
 - In house thickness measurement by XPS/Auger using custom carbon film standards
 - Outside collaboration with UT-Dallas for TOF SIMS
 - Possible collaboration with Stanford for cryo-TEM
- Real time thickness measurements as a function of charge discharge regime
 - Determine what is cause for increase in anode thickness
- Summarize all current knowledge on failure mechanisms to propose chemical additive solutions for interim cell build
- Build and submit interim cells to DOE for end of second budget period

Any proposed future work is subject to change based on funding levels

Response to previous year reviewer comments

- Reviewer suggested putting more weight on 5 V stability
 - Daikin Industries has committed significant resources to develop 5 V electrolyte with national lab partners. Daikin is now focusing on chemistries which are closer to commercialization and the subject of this project
- Reviewer suggests lack of quantified milestones and that technical risks/mitigation strategies need to be discussed more
 - This project has 12 distinct milestones which are centered around analytical experiments. It is difficult to place quantified milestones in a project where the main focus is to identify failure mechanisms. The collected and collated data are the deliverables for each milestone.
- Reviewer advised greater attention should be paid to the compatibility of these solutions with practical (e.g. graphite) anodes
 - All cells used in this study are commercial grade cells (production overruns) which contain graphite anodes.
- Reviewer suggested that project team needs to demonstrate understanding of the electrolyte/high voltage cathode stability issues and provide rationale to suggest how fluorochemical additives can enable stability above 4.6 V
 - Work in the past year has shown the relationship between the oxidized cathode and the electrolyte in several voltage windows. These results allow Daikin to judiciously choose additives based on failure mechanism (ie. Direct oxidation of electrolyte, electrode surface decomposition...)

Response to previous year reviewer comments

- Multiple reviewers cited Daikin lack of collaboration. In addition, one reviewer stated that it was unclear where surface characterization would be accomplished.
 - In the current year, Daikin will accomplish all the surface characterization milestones. Outside collaboration will be sought for samples preparation and characterization which will include techniques such as TOF SIMS. Daikin will perform some surface experiments (XPS, Auger) in house.
- Review asserted that the stability of the anode/electrolyte interface must be improved for these electrolytes to have practical applications
 - Daikin recognizes that anode/electrolyte stability will need to be achieved to enable long term cycle performance. The efforts of this project have been focused on the cathode/electrolyte interface due to its direct link to high voltage failure. When this problem has been suitably addressed, the focus will move to other components of the cell.
- Reviewer suggested the project team to understand whether fluorocarbon performance between 4.5 and 4.6 V is due to cathode or electrolyte
 - The work in this last project year was focused on this topic. It has been found that this performance decrease is due to both the cathode as well as at least one component of the fluorinated electrolyte (FEC).
- Reviewer Daikin needs to establish connection of this study to the overall objective of developing stable high voltage electrolyte
 - Researchers at Daikin believe the quickest route to developing high voltage electrolyte is to understand the failure modes of current state of the art electrolyte which is the objective of this project.

DAIKIN AMERICA INC. 21

Technical Backup Slides

DAIKIN AMERICA INC.²²

FY2017 Technical Accomplishments

Battery Performance as a Function of [FEC], Nickel, and Voltage

NMC111 200 mAh Cells

DAIKIN

DAIKIN AMERICA INC.²³

LCO 200 mAh Cells

FY2017 Technical Accomplishments

Battery Performance as a Function of [FEC], Nickel, and Voltage

NMC622 200 mAh Cells

100

Cycle Number (N)

50

0

20 FEC

200

150

DAIKIN

DAIKIN AMERICA INC.²⁴

NMC532 200 mAh Cells

FY2017 Technical Accomplishments

Battery Performance as a Function of [FEC], Nickel, and Voltage

- Cathodes with the largest amount of Nickel (NMC622 and NCA) have decreased capacity compared to NMC111 and NMC532 under our initial cycling experiments at .7C and CC charge/CC discharge
- FEC significantly increases performance at high voltage, with 10-15% being optimal based on our results

DAIKIN AMERICA INC.²⁵

Battery Performance as a Function of [FEC], Nickel, and Voltage

Cathode	Cycles	Capacity % (0 FEC)	Capacity % (20 FEC)
LCO	200	94.4	93.5
NMC111	200	94.4	96.9
NMC532	200	98.2	98.8
NMC622	200	98.1	92.3
NCA	200	98.3	98.5

4.2V Capacity Retention After Cycling at .7C

4.6V Capacity Retention After Cycling at .7C

Cathode	Cycles	Capacity % (0 FEC)	Capacity % (20 FEC)
LCO	100	17.8	58.0
NMC111	200	67.8	89.1
NMC532	200	91.5	92.8
NMC622	200	55.9	86.3
NCA	200	85.3	92.3

 > 80% capacity retention after 200 cycles with 20% FEC at 4.6V in all cells containing Nickel in the cathode (NMC111, 532, 622, and NCA)

DAIKIN AMERICA INC.²⁶

