ADHESIVE BONDING OF CARBON FIBER REINFORCED PLASTIC TO ADVANCED HIGH STRENGTH STEEL

PI: Zhili Feng, Oak Ridge National Laboratory

Co-PI: Kevin Simmons, Pacific Northwest National Laboratory

2018 DOEVTO Annual Merit Review

June 19, 2018

Project ID # MAT-137

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Start: Oct, 2017
- Finish: Sept, 2020
- 20% Complete

Budget

- Project Funding \$2,025K
 - FY18 \$675K
 - FY19 \$675K
 - FY20 \$675K

All proposed future work is subject to change based on funding levels

Barriers

- Limited scientific understanding of joining mechanisms for metal to composite joints
- Few technologies exist for joining metals to composites
 - Low joint strength
 - Crack arrest resistance in crash
 - Thermal expansion mismatch
 - Durability and environmental effects

Partners

- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory

RELEVANCE

EERE-VTO Goal:

By 2025, demonstrate a cost-effective 25% glider weight reduction at no more than \$5/lb saved by 2025 as compared to a 2012 baseline

Project Objectives

Early-stage R&D focusing on

- Fundamental understanding of CFRP to AHSS adhesive bonding characteristics at nano/micro scales;
- Identify and explore innovative adhesive bonding concepts and approaches for performance and productivity through scientific understanding
- Develop better tools for adhesive bonding performance, joint design, and lifetime prediction
- Closely interact with the Interface by Design Task

Enable increased use of CFRP in multi-material body structure for weight reduction

FY18 MILESTONES

Milestone Name/Description	End Date	Туре
Identify potential surface/interface engineering process/methodology for Interface-By-Design. Down-select one or two potential processes for feasibility investigation of interface engineering	12/30/2017	Quarterly Progress Measure (Regular)
Demonstrate completion of surface characterization of PP and Nylon CFRP and DP980 steel to determine the surface chemistry and surface morphology	6/30/2018	Quarterly Progress Measure (Regular)
Demonstration capability of electrical resistivity- based health monitoring of Steel/CFRP joints	9/30/2018	Quarterly Progress Measure (Regular)

APPROACH **OVERALL PLAN FOR ADHESIVE BONDING OF CFRP-AHSS**

ACCOMPLISHMENT SURVEY OF DIFFERENT ADHESIVES

NATIONAL LABORATORY

Wide range of shear strength and elongation of adhesives in literature

How will these factors contribute to metal to adhesive bonding?

ACCOMPLISHMENT **EFFECTS OF CURING TEMPERATURE AND TIME**

NATIONAL LABORATORY

ACCOMPLISHMENT CHAIN MOBILITY: CFRP SURFACE DEFORMABILITY AND ADHESIVE BONDING

ACCOMPLISHMENT

INITIAL ADHESIVE BONDING TESTS OF CFRP-AHSS WITH DIFFERENT ADHESIVES

Lap shear test revealed considerable differences in joint strength and failure modes

Material	Ad	lhesive #I		Adhesive #2	Adhesive #3		
Combination	TSS (kN/ MPa)	Failure Mode/location	TSS (kN/ MPa)	Failure Mode/location	TSS (kN/ MPa)	Failure Mode/location	
DP980/DP980	20.8/ 33.3	Cohesive	16.1 / 25.7	Zn Delamination	20.3/32.5	Cohesive	
DP980/CFRP	8.7/14	• Base CFRP	13.1 / 21	Base CFRPCFRP side adhesiveZn delamination	3.6/5.7	Adhesive	
CFRP -CFRP	4.7/ 7.6	 Adhesive Adhesive & CFRP	11.3 / 18.8	Base CFRPPartial Adhesive	3.4/5.4	• Adhesive	

• Bare DP980/1180: t=1.2mm; CFRP (PPA): t=3.1mm; Curing: supplier recommendations

DIC full strain field measurement of local deformation and failure

ACCOMPLISHMENT DEFORMATION AND FAILURE PROPOGATION AT ADHESIVE BOND LINE AS REVEALED BY DIC LOCAL STRAIN FIELD MEASUREMENT

RESPONSES TO PREVIOUS YEARS REVIEWERS' COMMENTS

- Project is a new start in FY18.
- No prior year comments to address.

COLLABORATION AND COORDINATION

- An integrated R&D team from ORNL and PNNL
 - Closely coordinated research activities and responsibilities as highlighted in Approach on Page 4
 - Bi-weekly web meetings between research team members
- Industry partners Dow Automotive, L&L, 3M, PPG provided adhesives

Core Research Team Members

- ORNL: Zhili Feng, Amit Naskar, Yong Chae Lim, Jian Chen, Ngoc Nguyen, David Warren, Xin Sun
- PNNL: Kevin Simmons, Leo Fifield

REMAINING CHALLENGES AND BARRIERS

- Limited fundamental understanding of metal to CFRP adhesive bonding characteristics at nano/micro scales;
 - Effects of surface conditions (morphology, chemistry) of substrates
 - Adhesive chemistry and additives, compatible to both AHSS and CRFP
 - Long-term performance and environmental degradations
 - Inhibition of galvanic corrosion,
 - Compatibility with CTE mismatch
- Lack of scientifically sound, effective approaches to design and engineering high performance adhesives and assembly technologies

PROPOSED FUTURE WORK

& OAK RIDGE

National Laboratory

- Continue on in-depth understanding on interface bonding, deformation and roles of adhesive properties at nano/micro scales (FY18/19)
 - Connect to macroscopic level joint deformation and failure
- Innovative surface modification technology (FY19)
 - Identify and develop surface modification concept based on above indepth understanding and interface by design for improved bonding strength.
 - Develop processes that will effectively modify both the interface morphology and interface chemistry
- Adhesives tailored for metal to CFRP bonding (FY19/20)
- Heath monitoring of curing/manufacturing process and structural soundness in service (FY19/20)

Any proposed future work is subject to change based on funding levels

SUMMARY

- This early stage research focuses on the fundamental aspects of adhesive bonding between CFRP to AHSS. In concert with the Interface by Design Effort, innovative adhesive bonding concepts would be identified and explored.
- This project was initiated in FY18
 - Established overall R&D plan, schedule and material combinations
 - Quantified surface roughness and no-uniformity of CFRP
 - Determined cure kinetics, structure formation and thermomechanical properties of CFRP and adhesives
 - Completed baseline study on the influence of adhesives on bonding strength and failure modes
 - Initiated in-depth study on interface bonding, deformation and roles of adhesive properties at nano/micro scales

TECHNICAL BACKUP SLIDES

DETAILED TASK PLANNING (GANTT CHART)

Traits	Title	Q3 /		Q4 / 201					2018			Q2/2018			Q3 / 201	
		9	10	11	12		1		2	3	4	5	6	7	8	9
	▼ PM-Work plan zf				PM-Work pla	an zf 🖣										
1 🗹	 Develop Preliminary Project Scope Statement 		Develop	Preliminary Proje	ct Scope State	ment		Proje	ect Leads; F	Project Manag	er; Acceptor					
8	Materials					Ma	terials									
13	Bonding Study				Bonding St	tudy 🤅					\sim					
14	 Interface and Bondline Characterization and Property Testing 		Interfac	ce and Bondline	Characterizatio	on and F	Property		ORNL							
28	 Bondline Characterization 			Bond	line Characteriz	ation										
123	 Processes for Interface Design to Improve Bonding Strength 	Proc	esses for Interfa	ace Design to Im	prove Bonding	s 🤇										
124	 Surface Modification (ORNL) 			Surface M	Nodification (OF	RNL) 🤇										
125	▼ Laser				L	aser 🤇										
126	► CFRP				c	CFRP										
210	Plasma				Pla	asma	<u>)</u>									
217	Thermal embossed surface			Therma	al embossed su	irface)									
218	▼ Reversible joints							Reversible jo	oints 🤝					\sim		
219 🛛	Review SOA							Review	SOA							
220	Acquire reversible adhesives							Acquire rev	ersible adh	esives						
221	Mechanical Testing									Me	chanical Testing 🤇	/		\rightarrow		
222	 Shear testing – torsion, lapshear 								St	near testing –	torsion, lapshear					
228	 Tensile testing – internal bond strength 										Tensile testing – in	ternal bond stre	ngth			
231 0	DCB												DCB			
232	 Health monitoring and NDE in Both manufacturing & service. 								Health	n monitoring a	and NDE in Both m	anufacturing &.				
236	Adhesive Development											Adh	esive Development			
239	▼ Modeling				Mode	eling 🤤					3					
240 🛇	Micromechanical				Micromecha	anical										
241	MD simulation							MD sim	ulation							

COMPLEXITY OF ADHESIVE BONDING

Multi-disciplinary topic

- surface chemistry
- Physics
- Rheology
- polymer chemistry
- stress analysis
- polymer physics
- fracture analysis
- Adhesion mechanisms
 - Diffusion
 - Mechanical
 - molecular and chemical and thermodynamic adhesion phenomena

F. Awaja et al. / Progress in Polymer Science 34 (2009) 948-968

ACCOMPLISHMENT SURFACE ANALYSIS VIA TOF-SIMS, SURFACE CONTAMINATION

- The SIMS spectra of 40%CF/ PA66 before and after Acetone/Alcohol/Water cleaning look similar;
- However, surface contamination, e.g., SO₃⁻ and HSO₄⁻ greatly decreases.

ACCOMPLISHMENT SURFACE ANALYSIS ON 40%CF-PA66 IM PLAQUE

Keyence Laser Profilometer Surface Roughness

- Smooth region
 - Average Ra=0.314 µm
 - Max profile height Rz=18.116µm
- Rough region
 - Average Ra=2.213 µm
 - Max profile height Rz=28.258 µm

Carbon fibers are easily differentiated in the energy dispersive spectroscopy (EDS) elemental mapping. Carbon, oxygen, and nitrogen were the elements observed

ACCOMPLISHMENT SURFACE ROUGHNESS OF DP980 (BARE)

Sample	Ra (um)	Rz (um)
1	1.36	9.34

ACCOMPLISHMENT SURFACE CHARACTERIZATION OF GALVANNEALED DP980 (45/45)

compressed zeta phase (A) and crystallized zeta phase (B)

ACCOMPLISHMENT THERMOMECHANICAL PROPERTIES OF CFRP

(3-point bending with a ramp rate of 3 °C/min) TS-CFRP TS-CFRP-2 TP-CFRP BASE

Storage modulus at two selected reference temperatures (Unit: GPa)

Sample	150 °C	180 °C
TS-CFRP	10.1	3.8
TS-CFRP-2	3.1	2.1
TP-CFRP_BASF	4.3	3.9

ACCOMPLISHMENT GLASS TRANSITION TEMPERATURE OF CFRP

Glass transition temperatures determined by max G"								
Sample	Т _g l (°С)	Τ _{g2} (° C)						
TS-CFRP	-66.2	126.8/ 152.4						
TS-CFRP-2	-61.9	135						
TP-CFRP_BASF	-58.I	64.2						
Glass transition temperatures determined by max tan (δ)								
Sample	Т _g l (°С)	Τ _{g2} (° C)						
TS-CFRP	-63.2	131.1/158.7						
TS-CFRP-2	-61.9	142						
TP-CFRP_BASF	-58.I	70.2						

Note: The TS-CFRP has two thermal relaxation overlapped at T_{g2} showing a very broad transition peak in both G" and tan (δ) graphs.

TECHNOLOGY TRANSFER ACTIVITIES

- Project is just starting.
- No technology transfer activities to date.
- Maintained close interactions with auto OEM and adhesive suppliers
- Results and findings will be disseminated through publications

