

Spray-Wall Interaction at High-Pressure and High-Temperature Conditions

S.-Y. Lee¹(PI), J. Naber¹, R. Scarcelli², S. Som², M. Raessi³, R. Torelli², L. Zhao¹, X. Zhu¹, D. Markt³, A. Pathak³ ¹Michigan Tech, ²Argonne National Lab, ³UMassD

Project ID # ACS108

2017 DOE Vehicle Technologies Office

Annual Merit Review and Peer Evaluation Meeting

June 8, 2017 – Washington, DC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Jan. 2016
- Project end date: Dec. 2018
- Percent complete: 40%

Budget

- Total project funding
 - DOE share: \$570K (+ANL \$180K)
 - Cost share: \$85K
- Funding received in FY 2016: \$185K
- Funding for FY 2017: \$190K

Barriers

- Insufficient understanding of spray physics and spray-wall interactions (SWI)
- Absence of extensive data for development and validation of spraywall impingement models
- Lack of measurement method of postimpingement vaporization and film dynamics

Project Partners

- Michigan Technological University Lead
- Argonne National Laboratory
- University of Massachusetts Dartmouth

Relevance/Objectives

- Relevance
 - Improvement of existing spray-wall interaction models that are 20 years old and are validated for water only
- Overall Objectives
 - High pressure vaporizing drop-wall impingement and film formation supported by laboratory experiment
 - Physics-based predictive CFD sub-models of spray-wall interaction
- Objectives this period
 - o Impingement experimentation for rebound spray dynamics characterization
 - Experimentally validated a high fidelity Lagrangian-Eulerian (LE) Reynolds-Averaged Navier-Stokes (RANS) model for spray-wall interaction
 - DNS frame of droplets impinging on dry/wet walls supported by LE model
- Impact
 - \circ $\,$ Improve the high-density ratio vaporizing processes on spray-wall wetting $\,$

Milestones – FY 16 & 17

Date	Milestones	Status
April 2016	Milestone Transparent and metal plates design and fabrication	Complete
September 2016	Milestone Validate spray models in CONVERGE framework	Complete
March 2017	Milestone Impinging characterizations in high-pressure chamber	Complete
April 2017	Develop capabilities to extract required pre-impingement droplet characteristics from LE CFD simulations	Complete
June 2017	Milestone Implementation of basic DNS model of droplet-wall impingement with multiple droplets	On track
December 2017	Milestone Model of film formation dynamics and interactions between multiple droplets on splashing supported by heated wall test	On track
December 2017	GO/NO-GO New improved non-evaporating SWI model based on DNS, 90% accuracy	

Approach/Strategy – Plan

Technical Accomplishments

Experimental Approaches

- Two metal / one transparent plates and offaxis injector window
- Temperature-controlled impingement window: six heaters, seven thermocouples, and three heat flux probes

- Visualization: simultaneous front, side, and bottom spray views
- Optical methods:
- Schlieren: vapor spray
- Mie: liquid spray
- **RIM** (refractive index method): film thickness
- LIF (laser-induced fluorescence: film thickness
- Injector: 7-hole and single-hole nozzle

Test/Simulation Conditions and Experimental Results

	7-hole	Single-hole
Ambient gas temperature	423K / 900K	423, 500, 600, 700, 800, 900K
Ambient gas density	0.8 - 30 kg/m ³	
Ambient gas oxygen	N2 (non-vapor))/ 0% O ₂ (non-reacting)
Nozzle outlet diameter	~ 0.139 mm	0.200 mm
Nozzle K factor	1.5	0.0
Orifice orientation relative to injector axis	ψ = 74° (inclined angle: 148°)	ψ = 60° (inclined angle: 120°)
Fuel injection pressure	1500 bar	1200, 1500, 1800 bar
Fuel		Diesel
Fuel temperature at nozzle	150°C	90°C
Wall temperature	150°C	150°C, 200°C, 250°C
Injection duration		2.0 ms
Distance between injector tip to impinging surface	64 mm	Metal: 40 mm Transparent: 52 mm

Plate temperature determination: GDI engine piston surface temperature range- 125°C to 150°C; Diesel engine piston surface temperature range- 125°C to 200°C

- Rebound radii have larger penetrations than rebound spray on wall. This phenomenon occurs for both axial and radial directions
- Axial rebound radius is slightly higher than that in radial direction and rebound height in axial direction is slightly lower than one in radial direction

Rebound Spray Characterizations

Wall-impinged expanding spray (WIES)

- Sector-averaged radius over the arc sector is estimated because the WIES front is highly wrinkled as it propagates on the wall surface
- Final arc angle (30°) is determined by varying angle for the least sensitivity for the radius variation
- A number of spikes (time interval of 40 µs) are formed randomly due to combined effect of injected flow rate fluctuation and turbulence between WIES front and surrounding gas
- WIES expansion process is divided into four stages: rapidly decelerated stage, slowly decreasing stage, relatively constant stage, and expanding termination stage

Mesh Strategies for Grid-Dependency Reduction

A best practice was developed for reduced grid-dependency with multi-hole injectors

- Plumes **aligned** with the grid (e.g., Orifice 1) are affected by a different **momentum exchange**
- Maximizing the misalignment between the grid and the plumes guarantees that the influence of the grid is minimized with respect to the free-spray penetration
- The results were validated against MTU's experiments on the 7-hole injector

Validation of CFD Setup

The **CFD setup was validated** against data obtained from several injectors and for multiple operating conditions, including **ECN Spray A** and **MTU's 7-hole injector**

The **free-spray behavior** (1) was **well predicted** as well as the **time of impingement** (2).

Some **discrepancies arose** in the description of the **spray-wall interaction** with the **available models** (spray recirculation at the edges is not captured (3))

Post-processing tools were developed to compare the CFD results with the experimental measurements:

- · Good agreement for axial spreading of the spray
- Model improvement is necessary for correct predictions of radial rebound and spray height: splashing dynamics are not well reproduced by the available models

Generated Inputs for DNS

Data can be extracted at any point and time to initialize **DNS** of **droplet impingement**

Data include, but are not limited to, **global** (<u>SMD, *We* and *Re* distributions</u>) and **local quantities** (<u>droplet size, temperature, gas</u> <u>pressure, velocities</u>)

From ANL to UMassD

DNS calculations can capture important details of droplet impact dynamics onto wet or dry surfaces, under nonevaporating and evaporating conditions

The feedback from DNS runs will be used to **improve** the **spray-wall interaction models** with **more detailed** and **accurate correlations**

Spray Film Interaction (O'Rourke & Amsden)- Validation

The splashing model:

The secondary drop information input to: film momentum^[1] & film energy^[2] equation

Mundo, Sommerfeld and Tropea^[3]

- Experiment: Single impinging drop on dry solid surface
- A splash parameter for occurrence of splash
- Secondary drop size / velocity measured

Yarin and Weiss^[4]Multiple drop interaction

- Experiment: train of drop impinging on wet wall
- Secondary drop size / total mass measured
- Splash criterion independent of drop diameter

All experiments considered drop sizes 60 μm – 200 μm

O'Rourke and Amsden^[1] Validation lacking

- Single drop impinging on a film
- Above experiments used to formulate: splash criterion and secondary droplet distribution
- 1. O'Rourke and Amsden, SAE, 2000
- 2. O'Rourke and Amsden, SAE, 1996
- Splashing criterion (Yarin & Weiss): Does the same threshold apply to single micron drops? Extension & $Ca\lambda^{-3/4} = 17$ Splashing Ca 1 $Ca = \rho V_0 \nu / \alpha$ Data for $R_z = 1 \ \mu m$ Ethanol, D=102 μm Spreadi Ethanol, $D = 168 \ \mu m$ only O Ethanol, $D = 122 \,\mu m$ • Ethanol, D=192 μm 10 100 $\lambda = (\nu/f)^{1/2} \alpha/(\rho \nu^2)$ $= \frac{V_0}{(\alpha/\rho)^{1/4} \nu^{1/8} f^{3/8}} = 17 \text{ (Exp.[4])}$ $rac{V_0}{(lpha /
 ho)^{1/4}
 u^{1/8} f^{3/8}} \gg 1$ (Theory^[4]) Splashing threshold of 17 Length scale: distance b/w droplets (not diameter) independent of drop diameter 3. Mundo et al., Intl J Multiphase flows, 1999
- 4. Yarin and Weiss, J. Fluid Mech., 1995

13

Droplet Impact Simulation Results

14

Partners/Collaborations

Remaining Challenges and Barriers

- To extract the details and physics-base information using the DNS model to quantify the model associated with vaporization on the hot surface and explore the post-impingement droplet dynamics and secondary fuel vapor mixing process with ambient gas
- To formulate a VOF-based mathematical evaporation sub-model of spray-wall impingement and film formation processes
- To accurately measure, firstly, the vaporization before the impingement and, secondly, the vapor portion and film after impingement
- To systematically analyze uncertainties in experimental and modeling results and parameters
- To address challenges associated with the full implementation of the proposed sub-models (eVOF and drop-wall interaction) in various relevant CFD frameworks

Future Work- We will continue to develop and validate of evaporation VOF and spray-wall interaction models

Ongoing Support validated LE model frame for DNS	FY16 – [Q1 Milestone] ECN single injection spray simulation FY16 – [Q3 Milestone] Isothermal spray-wall test for post impinging spray FY16 – [Q4 Milestone] High-fidelity spray model setup
Proposed Extend DNS model to handle evaporation spray- wall supported by heated wall test	 FY17 – Spray-wall test Continue isothermal non-isothermal/heated wall test Film formation and surface heat flux FY17 – Sub-model development DNS Non-evaporating spray-wall interaction Impinging evaporating spray droplets FY17 – Spray-wall interaction for non-evaporating development sprays Lagrangian-Eulerian (LE) model and VOF based on DNS
Planned Future solvers for CFD package	 FY18 – Feedback test for heat flux and film characteristics FY18 – DNS for spray-wall interaction and evaporation Impinging evaporating spray droplets Validation of film dynamics and heat flux FY18 – Spray-Wall Interaction Validation at Vaporizing Conditions Implement eVOF model into spray modeling approach Make data to Public FY18 – Code Usability Test

Any proposed future work is subject to change based on funding levels.

Summary

Objective

Develop, implement and validate an evaporation VOF sub-model of spray-wall interaction without extensive need of parameters tuning

Approach

□ Impinging plates

Temperature-controlled metal and transparent impinging plates

□ Spray-wall impingement test

- Develop simultaneous Mie/schlieren to extract postimpact spray properties
- Develop RIM and LIF for film formation dynamics
- Lagrangian-Eulerian (LE) impinged spray model
- Develop experimentally-validated LE model for postimpact sprays
- Generate DNS input data and implement LES dropwall model
- DNS of evaporating droplets impinging on surface
 - Develop DNS model of film formation dynamics, droplet splashing and rebound

Model film formation on an heated wall

Accomplishment

Impinging plates

Complete fabrication and functional (~ up to 550K)

Spray-wall impingement test

Complete first-round impinging characterization test and data used for LE model development

Lagrangian-Eulerian (LE) impinged spray model
 Capture experimental trends but need to
 improve the rebound spray height match.
 Generate interaction zone data for DNS input

□ Initiation of DNS model

Match well with published data and progress on impinging test simulation

Future work

- Heat flux and film thickness measurement
- Local spray characteristics at the interaction zone in DNS and LE frameworks

Technical Backup Slides

Further DNS Work: we are trying to improve splashing threshold, film formation and wall-film interaction

- Verify splashing threshold $u = \frac{V_0}{(\alpha/\rho)^{1/4}\nu^{1/8}f^{3/8}} = 17$ for single micron diameter droplets

ANL Droplet Data

- Use multiple median size droplets to represent the spray conditions
 > Representative droplet will be used to verify and revise the splashing threshold
- Use a distribution of droplets contained in the spray to study film formation dynamics and the interactions between multiple droplets on splashing
- Develop a VOF-based evaporation model to study how wall-film interaction changes due to evaporation

