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Timeline
• Project start date, Jan 1, 2015
• Project end date, Dec 31, 2017
• 83% complete

Overview

Budget
• $1,220K (total)
• Project end date, Dec 31, 2017
• 83% complete

Technical Barriers
• Prevent Li dendrites to enable 

metallic Li anodes
• Integrated solid-electrolyte into 

advanced solid-state batteries
• Achieve high current densities 

approaching 1 mA/cm2

Partners
• Oxford University, UK (C. Monroe)
• Army Research Lab (J. Wolfenstine 

and J. Allen)
• Oak Ridge National Lab (J. Nanda, 

M. Naguib, and N.J. Dudney)
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Objectives
• Achieve a step increase in performance compared to Li-ion, by 

enabling the use of metallic Li anodes.
• Understand the role that defects play in governing the stability and 

kinetics of the Li-solid electrolyte interface.
• Quantify the effect of each defect type on the maximum tolerable Li 

plating/stripping rate. 
Impact
• Fundamental knowledge can be used to develop approaches to 

increase tolerance to defects that control the maximum Li 
plating/stripping rate.    

• Facilitate efforts to develop commercially-viable ceramic membrane 
technology to protect Li anodes.

• Maps the Li-solid electrolyte interface performance characteristics to 
determine relevance to vehicle electrification

Relevance
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Area of Interest: Area 3, Beyond Li-ion Technologies
Estimated Total Cost: $1.22 M
Period of Performance: 3 years

Gap: Various defects are expected to control current 
density, but little understanding of mechanisms and their 
relative importance 

Solid electrolytes: a 
unifying technology for 
Beyond Li-ion batteries

Our focus:
LLZO garnet
electrolyte

LLZO advantages:
• σ = 1 mS/cm at 298K
• Stable against Li & in air
• Adequate shear modulus

Prevent 
S-dissolution

Block Li-Sx
migration

Goal: Demonstrate polycrystalline LLZO membranes 
in Li-metal & Li-S batteries that support current 
densities approaching that of defect-free crystals (> 1 
mA/cm2) 

Approach: Quantify 
the role of defects in 
determining LLZO 
stability and 
maximum current 
density using a 
combination of 
experiments and 
atomistic/continuum 
modeling

Safety; 
Suppress 
dendrites

Defect Type Effect or Plausible Consequence

Porosity Discontinuities in transport  hot spots?

Grain Boundaries Higher resistance than bulk  alters Li-ion 
migration pathway?

Interfacial 
Impedance

Localized polarization; amplified by 
incomplete wetting and roughness?

Surface Impurities Increased interfacial resistance; formation of 
passivation barriers?

Bulk 
Impurities/Dopants

Slower Li transport if non-Li species occupy Li 
sites? 
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Objective
Hypothesis: defects govern the maximum tolerable current density
Approach: study and quantify the effects of each defect type to enable 
solutions to suppress Li metal propagation in polycrystalline LLZO

Maximum tolerable 
current density: 
Single crystal  LLZO
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Milestones (June 2016 – 2017, Project Q6-Q10)
✔
✔

✔
✔

✔

✔

6



Develop solid-electrolyte technology
• Enabling metallic Li anodes could increase the energy density (>1000 

Wh/l) at the cell and battery pack level.
• The parameters that control the stability and kinetics of the Li metal-SE 

interface are not well understood. 
• This project focuses on understanding the role that defects play in 

controlling the highest tolerable current density (critical current density -
CCD).  

• To achieve relevance to EVs, our goal is to demonstrate a CCD of > 1 
mA/cm2 in prototypical half cells.

• This project involves close collaboration with ORNL (Dr. N. J. Dudney, 
BMR; “Mechanical Properties at the Protected Lithium Interface”).

• Go/No-Go Decision: Down-selected which microstructural defect had 
the most profound effect on CCD in Q6.

Approach/Strategy
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> 98% relative density
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Microstructural analysis
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Microstructural analysis

 Goal: make LLZO under highly controlled conditions to control defects
 Philosophy: if it doesn’t work in the idealized form, it won’t work at all

Materials approach
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 Complex impedance isolates and quantifies transport phenomena
 Lack of side reactions simplifies interpretation

Electrochemical characterization
Simplified complex impedance

Rbulk (Ω.cm2) 333.2
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Computation

GB GB GB

First-principles calculations of
surface reactivity

MD &Monte Carlo simulations of 
segregation and transport at grain boundaries

First-principles calculations of
elastic moduli

Electrochemical window evaluated using many-
body perturbation theory (GW method) 10



Effect of grain boundaries

Cheng E. J., Sharafi A. and Sakamoto J., Electrochimica Acta (2016).

 How does soft Li penetrate a hard ceramic? 11



Li metal

Cheng E. J., Sharafi A. and Sakamoto J., Electrochimica Acta (2016).

 Clearly identified grain boundaries as the primary defect that governs CCD.

LLZO grains

Effect of grain boundaries
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Effect of surface contamination 
Reducing RLi-LLZO

A. Sharafi, et al., Impact of air exposure and surface chemistry on the Li-Li7La3Zr2O12 interfacial 
resistance, In Peer Review 

v Analyzed the reaction pathways between air and LLZO.

Li+/H+ ion exchange: Li!La!Zr!O!" + x!H!O → Li!!!H!La!Zr!O!" + x!LiOH  

(1a) 

Carbonation of LiOH:  LiOH+ !
! !CO! →

!
! Li!CO! +

!
! !H!O 



A. Sharafi, et al., In Peer Review 

 Correlated the interfacial resistance to surface chemistry

Effect of surface contamination 
Reducing RLi-LLZO
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15
A. Sharafi, et al. submitted, patent application

v Developed a simple method to clean LLZO.

Effect of surface contamination 
Reducing RLi-LLZO



 Correlated and quantified the effect of surface chemistry and Li wetting.

Li on Li2CO3/LLZO

Li on LLZO

A. Sharafi, et al. submitted, patent application

Li on Li2CO3

Effect of surface contamination 
Reducing RLi-LLZO

16



 Achieved ultra-low RLi-LLZO interface resistance.
 Validated/reproduced by National labs and industrial partners.

RLi-LLZO

A. Sharafi, et al. submitted, patent application

Effect of surface contamination 
Reducing RLi-LLZO
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 Demonstrated the Li-LLZO interface is stable upon during and after DC cycling.
 Validated/reproduced by National labs and industrial partners

A. Sharafi, et al. submitted, patent application

Effect of surface contamination 
Reducing RLi-LLZO
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 Completed initial assessment of hybrid Li-LLZO-Sulfur cell performance.

Enabling Li-S
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Varying grain size
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 Can vary the grain size and grain boundary morphology/curvature.
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Grain size
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Responses to Preview Years 
Comments
• None, new project.
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Partners and Collaborators

Prof. Don Siegel
• Lead the atomistic computational modeling component of the project

Dr. Jagjit Nanda
• Perform in-situ/in-operando spectroelectrochemical analysis

Drs. Jeff Wolfenstine and Jan Allen
• Atomic force microscopy in a state-of-the-art battery dry room to 

enable testing of cycling LLZO interfaces

Dr. Andy Drews
• Contribute in an advisory role through quarterly or bi-annual 

interaction

Prof. Chuck Monroe
• Lead the continuum-scale computational modeling 
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Remaining Challenges and Barriers

Need to learn more about grain boundaries 
• What is unique about certain grain boundaries that triggers Li metal 

propagation?

• What are the transport properties of grain boundaries?

• What techniques are available to help elucidate instabilities at the Li-
SE interface? 

• At the end of this project, transition to characterizing the interface 
stability in thin films (~10 µm) to assure relevance; defects will be 
different in bulk monoliths vs. thin films.

24



Future work
FY 2018 (Q1)
• Map the effect of stack pressure and temperature on optimized Li-SE 

interfaces.   Milestone 1.8 (FY 2017 Q4)

• Through experiment and computation, establish a theory to correlate 
the critical current density with defects in bulk processed LLZO. 
Milestone 1.8 (FY 2018 Q1)

• Characterize the stability and kinetics of the LLZO-liquid electrolyte 
interface in hybrid Li-S cells.

• Demonstrate, through independent validation, stable cycling of 
metallic Li anodes in hybrid solid-liquid cells operating at > 1mA/cm2. 
Milestone 3.1 (FY 2018 Q1)

Any future work is subject to change based on funding levels 25



Develop solid-electrolyte technology
• Enabling metallic Li anodes could increase energy density (>1000 Wh/l) 

at the battery cell and pack level.
• Because solid-electrolyte membrane technology is new, there is a need 

to understand the phenomena that govern performance in prototypes.
• Specifically, this project seeks to understand how material processing 

affects the microstructure, which affects highest tolerable current density 
(mA/cm2).  To achieve relevance to EVs, our goal is to achieve > 1 
mA/cm2.

• This project involves close collaboration with ORNL (Dr. N. Dudney, 
“Mechanical Properties at the Protected Lithium Interface”).

• Go/No-Go Decision: Determine which aspect has the most profound 
effect on the maximum tolerable current density (critical current density –
CCD).

Summary
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Publications and Patents 
Publications
• Y. Kim,, H. Jo, J. L. Allen, H. Choe, J. Wolfenstine, and J. Sakamoto, “The Effect of 

Relative Density on the Mechanical Properties of Hot‐Pressed Cubic Li7La3Zr2O12” J. Am. 
Ceram. Soc., 99 [4] 1367–1374 (2016).

• C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, L., N. J. 
Dudney, and M. Chi, “Interfacial Stability of Li Metal–Solid Electrolyte Elucidated via in 
Situ Electron Microscopy: Nano Letters, 16(11), 7030-7036 (2016). 

• T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. A. 
Allen, E. Kioupakis, D. J. Siegel, and J. Sakamoto, “Electrochemical Window of the Li-Ion 
Solid Electrolyte Li7La3Zr2O12” ACS Energy Letters, 2(2), 462-468 (2017).

• E. J. Cheng, A. Sharafi, and J. Sakamoto, “Intergranular Li metal propagation through 
polycrystalline Li6.25Al0.25La3Zr2O12ceramic electrolyte” Electrochim. Acta 223, 85-91 
(2017).

• A. Sharafi, S. Yu, M. Naguib, M. Lee, C. Ma, H. Meyer, J. Nanda, M. Chi, D. J. Siegel, and 
J. Sakamoto, “Impact of Air Exposure and Surface Chemistry on the Li-Li7La3Zr2O12
Interfacial Resistance” J. Mater. Chem. A., under review.

• A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, and 
J. Sakamoto, “Achieving low resistance all-solid-state Li-LLZO interfaces through surface 
chemistry control” Energy Envir. Sci., under review.

Patent 
• J. Sakamoto, A. Sharafi, and T. Thompson, “System and Method for Treating the Surface 

of Solid Electrolytes” US Utility Patent Application Serial No. 62/480,080 (2017). 27



Presentations and Posters
Oral Presentations

• Invited: J. Sakamoto et al. “Mechano-electrochemical aspects in solid-state batteries” MRS, Phoenix (2017)

• Invited: D. J. Siegel et al.  “Atomic Scale Simulations of Solid Electrolytes—Mechanical Properties and Beyond” MRS 
Phoenix (2017).

• A. Sharafi, “ Controlling the Microstructure of Polycrystalline Li7La3Zr2O12 Solid State Electrolyte to Mitigate Li 
Dendrite Propagation ”, MRS, Phoenix (2017)

• J. Wolfenstine et al. “Mech. Properties of Oxide Based Li-ion Conducting Solid Electrolytes” MRS Phoenix (2017).

• Invited: J. Sakamoto, “Ceramic electrolytes enabling all solid-state batteries”, Int. Battery Seminar, Ft.  Lauderdale, 
FL (2017).

• Invited: J. Sakamoto, “Solid Electrolytes:  An Enabling Technology for Vehicle Electrification”, Batt. Cong., MI (2016).

• Invited : A. Sharafi, “ Stability of Li7La3Zr2O12 Garnet Solid-State Electrolyte Against Lithium”, Plug Volt, (2016) 

• Invited: J. Sakamoto, “Solid-state electrolytes enabling beyond Li-ion cell chemistries”, Beyond Li-ion, Pacific 
Northwest National Laboratory, Richland, WA (2016). 

• Invited: J. Sakamoto, “Solid Electrolytes:  An Enabling Technology for Vehicle Electrification”, American Automotive 
Battery Conference, Detroit, MI, (2016).

• Invited: J. Sakamoto, “Mechanical Stability of Solid Electrolyte Interfaces in Solid-State Batteries”, Electrochemical 
Society, San Diego, CA (2016).

• A. Sharafi, “Chemical stability of garnet solid-state electrolyte”, Electrochemical Society, San Diego, CA (2016)

• Invited: J. Sakamoto, “Solid State Batteries”, The Battery Show, Novi, MI (2016).

• Invited: J. Sakamoto, “Fast ion conducting ceramic electrolyte based on Li7La3Zr2O12 garnet”, American Chemical 
Society, Philadelphia, PA (2016).

Poster Presentations

• Correlating the effects of air exposure with surface chemistry and the impedance of the Li-Li7La3Zr2O12, Beyond
Lithium Ion IX, 2016 (Poster)
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