U.S. DEPARTMENT OF ENERGY

Systems and Modeling for Accelerated Research in Transportation

SMART Mobility – Urban Science Pillar

STAN YOUNG 2017 ANNUAL MERIT REVIEW JUNE 8, 2017

THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY, CONFIDENTIAL, OR OTHERWISE RESTRICTED INFORMATION

Overview

Timeline

- Project start date: 10/01/2016
- Project end date: 9/30/2019
- Percent complete: 15%

Budget

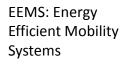
- Total project funding
 - DOE share: \$6M FY17–19
- Funding received in FY 2016: 0
- Funding for FY 2017: \$2M

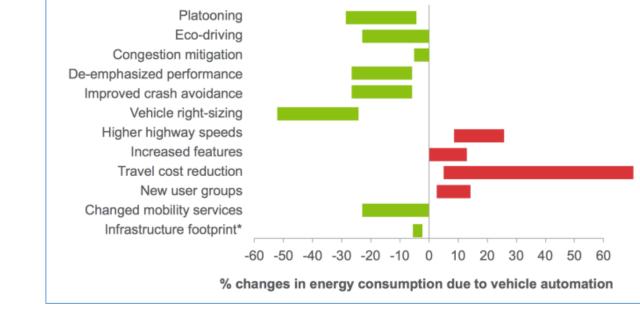
Barriers

- Computational models, design and simulation methodologies
- Constant advances in technology

Partners

- DOE Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium
 - NREL: National Renewable Energy Lab
 - ANL: Argonne National Lab
 - INL: Idaho National Lab
 - LBNL: Lawrence Berkeley National Lab
 - ORNL: Oak Ridge National Lab
- Associated Labs
 - LANL: Los Alamos National Lab
 - PNNL: Pacific Northwest National Lab
- Subs
 - Texas Transportation Institute
 - Metropia Inc.
 - George Mason University





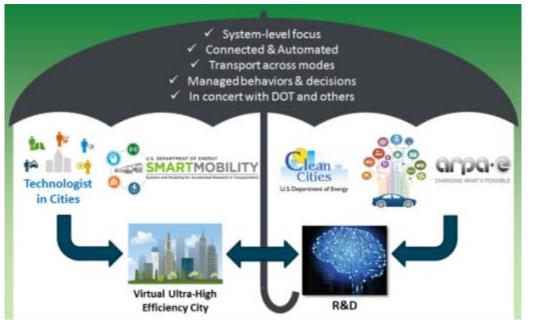
VTO Concerns

Increased connectivity, automation, and mobility may lead to -60% to +200% energy use and emissions impact

• EEMS Initiative towards a "Maximum Mobility, Minimum Energy Future"

Relevance – Continued

SMART Urban Science Objectives:


- Harmonize methods, models, and data on the impacts and implications of SMART Mobility
- Provide multiple urban case studies that yield insights by leveraging complementary expertise and tools across labs in the consortium
- Support the development of effective policies and best practices
- Identify key leverage points to increase sustainability
- Create a layered tool kit and modular tools to support Smart Cities.

By 2050, 66 per cent of the world's population is projected to be urban

> 2014 United Nations : World Urbanization Prospects

Cities consume close to 2/3 of the world's energy and account for more than 70% of global greenhouse gas emissions.

World Bank

Milestones

SMART Mobility Modeling & Simulation Tools Practice, Challenges and Future Directions

November 17 & 18, 2016 • Urban Dynamics Institute at

Oak Didge National Laboratory Oak Ridge, TN Month **Description of Milestone or** Status / Year Go/No-Go Decision Dec 2016 Assess the state of urban mobility modeling Complete maturity and capability to reflect SMART mobility mega-trends. Hosted workshop in Synthesis Study on FY17. (2.3.1) **Transitions in Signal** Synthesis study on existing signal Complete Mar 2017 Infrastructure and infrastructure and control schemes. (2.4) **Control Algorithms for** Jun 2017 On Track **Connected and** Curate Smart City partners' transportation models and supporting data. (2.1) **Automated Transportation** Sep 2017 Computational framework for rapid On Track transportation system model calibration. 28 March 2017 (2.3.3)

Approach – the Overarching SMART Structure

Multi-Year, Multi-Lab Effort (3 years, 5 labs)

- Energy implications of connectivity & automation
- Multi-modal transport of people and goods
- City-scale urban mobility models for planning
- Informed fueling infrastructure investments
- Understanding consumer mobility decisions

Approach – the Urban Science Pillar

Urban Science – one of five SMART Mobility pillars

- -How automation, connectivity, electrification, and shared use might impact the urban network/traveler
- -A city-centric view to modeling, data, and impact
- Stakeholder engagement with multiple urban areas to understand the problem space, then support and collaborate on targeted transportation energy opportunities
- Organized around five Urban Science pillar tasks

How will SMART tech impact cities

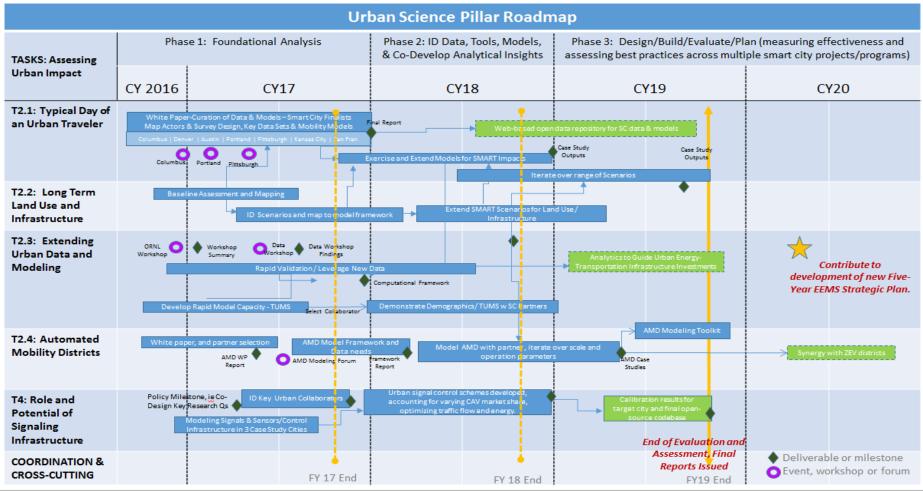
- -The Traveler vehicle miles travelled (VMT), congestion, ownership, Mobility as a Service (MaaS) (2.1)
- -Evolution of urban built environment (2.2)

• Extending urban data and models (2.3)

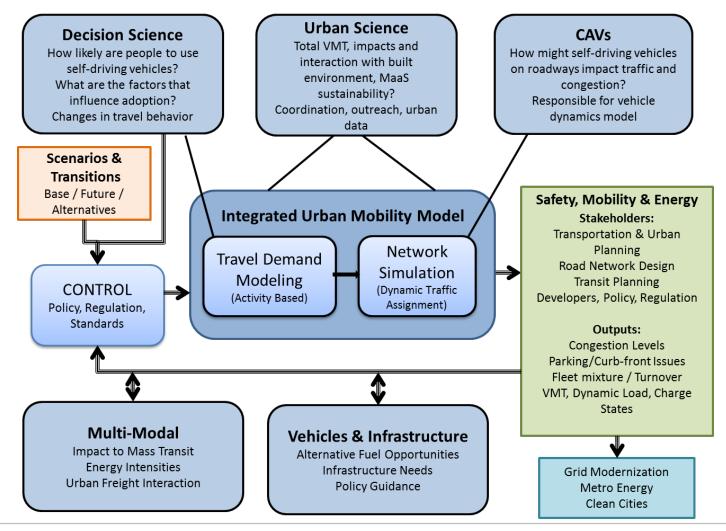
-Enable the efficient transfer of analysis and case studies developed within SMART to interested cities.

Analyze impact of Automated Mobility Districts (2.4)

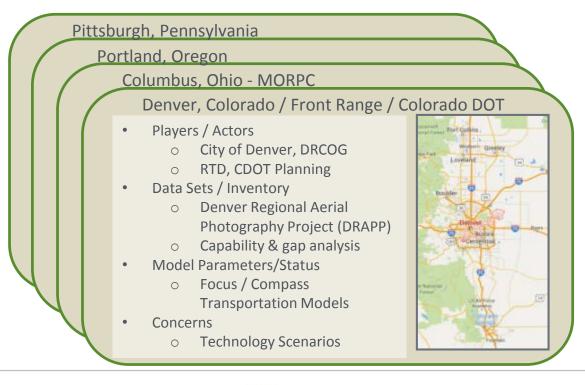
• Role of signal system in smart-enabled city (4.0)


-Consider robust control infrastructure (signals and sensors) be co-deployed for heterogeneous traffic

Approach – Continued


Multi-Year Urban Science Roadmap

Approach – How all the pieces fit together



• How will SMART Mobility technologies impact cities (2.1 & 2.2)

- Curate data and models from Smart City finalists
 - Denver, Columbus, Portland, and Pittsburgh engaged
- Cross-city perspective of model and data capacity to reflect SMART tech
- Initial draft Q3 FY17
- Provides basis for other tasks/pillars
- Identifies issues & opportunities for collaborative work

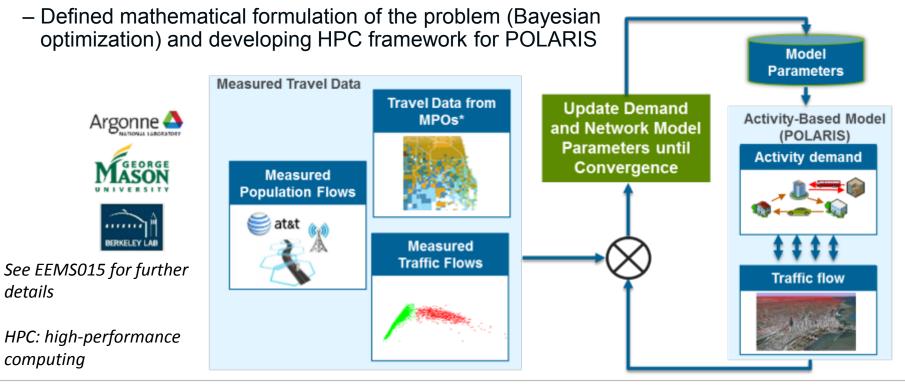
See EEMS007, Josh Sperling presentation

CDOT: Colorado Department of Transportation DRCOG: Denver Regional Council of Governments RTD: Regional Transportation District

- Extending Urban Data and Modeling (2.3 sub-tasks 1 & 3)
 - SMART Mobility Modeling & Simulation Tools Workshop, November 2017 at ORNL, summary of workshop published
 - SMART Mobility Transportation Data Workshop, May 9–10, UC Berkeley
 - Develop and extend rapid modeling capacity of TUMs (2.3.3)
 - Established a collaborative arrangement with Mid Ohio Regional Planning Commission to use Columbus modeling datasets in TUMS

See EEMS018, Budhendra Bhaduri poster

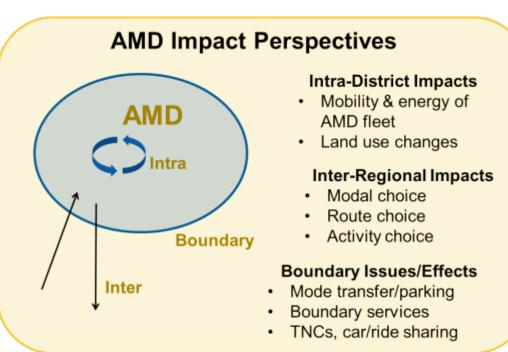
TUMS: Toolbox for Urban Mobility Simulations



Technical Accomplishments and Progress

• Calibration of Activity-Based Transportation System Simulation using High-Performance Computing (2.3.2)

 Approach: develop an HPC framework to automatically calibrate activity-based transportation system models – usually a manual and expensive process



• Automated Mobility Districts (2.4)

- –Initial white paper draft "Initial Assessment and Modeling Framework Development for Automated Mobility Districts," submitted to ITS World Congress
- Identified potential collaborators
 - Greenfield residential development
 - University district
 - Military base
- Exploratory modeling exercise using MATSim

See EEMS09, Yuche Chen presenting

TNCs: Transportation Network Companies MATSim: Multi-Agent Transport Simulation Toolkit

• Role & Potential of Signal Infrastructure in SMART (4.0)

- Paper "Synthesis Study on Transitions in Signal Infrastructure and Control Algorithms for Connected and Automated Transportation," Mar 31, 2017
- ITE abstract accepted "Opportunities and Challenges in Traffic Signal Operations and Infrastructure Deployment in the Era of Connected and Automated Vehicles"
- Ongoing identification of collaboration partners for case studies

See EEMS019, poster by Abdul Aziz, Ph.D.

City	State	Challenge	Vision Element	Strategy
Austin	ТХ	Pedestrian / Bicyclist Safety	Intelligent, Sensor-based Infrastructure	Pedestrian Detectors (intersections)
Austin	ТΧ	Freight Delays / Congestion	Urban Delivery and Logistics	Freight Signal Priority
Austin	ТХ	Accessibility for People with Disabilities and the Elderly	User-Focused Mobility Services and Choices	Apps for People with Disabilities
Austin	ТХ	Vehicle / Vehicle Collisions (intersections)	Connected Vehicles	Intersection Movement Assist (IMA)
Austin	ТΧ	Delays at Intersections	Connected Vehicles	MMITSS / I-Sig
Austin	ТΧ	Freight Delays / Congestion	Connected Vehicles	Freight Signal Priority
Austin	ТХ	Unpredictable / Unreliable Transit Service	Connected Vehicles	Transit Signal Priority

Table excerpt showing Smart City signal infrastructure elements in proposals

• This is a new project under the Energy Efficient Mobility Systems initiative. This project was not reviewed last year.

Collaboration and Coordination with Other Institutions

- DOE National Laboratories
 - -NREL, INL, ANL, ORNL, LBNL SMART Mobility Laboratory Consortium
 - -PNNL, LANL Associated Laboratories
- Other Institutions Subcontractors
 - Texas A&M Transportation Institute
 - Metropia Incorporated
 - George Mason University
- U.S. DOT and U.S. DOT Smart City Finalists
 - Enabled through MOU with U.S. DOT Technologist in City at Columbus, OH
 - Columbus, OH; Portland, OR; Denver, CO; Pittsburg, PA
 - Austin, TX; San Francisco, CA; Kansas City, MO
 - Collaboration with U.S. DOT personnel and offices
- Other Institutions
 - Universities: Texas Southern, Georgia Tech, Arizona State, U of Arizona, U of Maryland, U of Tennessee, U of Illinois Chicago, Northwestern, UCLA
 - Companies: RSG, Cambridge Systematics, ARUP, MRIGlobal
 - Transportation Authorities and MPOs: Atlanta Regional Council, CDOT

Rapid Adoption of Technology

Many of the changes in transportation are anticipated in a five-year horizon, while existing urban modeling cycles are 10 years or greater.

Data access and sharing

Access to city-specific data provides modeling opportunity. Industry data sets are becoming the norm, not the exception.

Efficiency in Urban Modeling

Transportation system modeling is extremely resourceintense (primary takeaway of workshop). Case studies, increased efficiencies, and standardized methods & tools are needed to extend limited resources.

• FY17 – Remaining

- -Complete curation of key models and mobility models (2.1 & 2.2)
- –Engagement with remaining Smart City finalists: San Francisco, Kansas, and Pittsburgh (2.1 & 2.2)
- -Identify scenarios for SMART Mobility impacts (2.1 & 2.2)
- -Rapid Calibration Computational framework (2.3)
- -TUMS collaborators finalized and data/model integration requirements (2.3)
- -AMD model frameworks (2.4)
- -Key signal infrastructure urban collaborators (4.0)

Any proposed future work is subject to change based on funding levels.

Proposed Future Research

- Impact of SMART Technology on Urban Areas (2.1 & 2.2)
 - -FY18
 - Expand/exercise partner transportation models for SMART tech
 - Develop web-based SMART Mobility open data repository
 - Expand SMART Mobility scenarios for land use and infrastructure
 FY19
 - Expand/exercise models for land-use/built-environment scenarios
- Extending Urban Data and Modeling (2.3)
 - -FY18/19
 - Demonstrate rapid tools (i.e., TUMS, Polaris calibration/validation) with partners
 - Continued industry-focused forums
 - Consideration of national-scale data plays
 - Toward rapid deployment framework/tools

Any proposed future work is subject to change based on funding levels.

- Automated Mobility Districts (2.4)
 - -FY18 Model and demonstrate AMD deployments with partners
 - Case study/ies of planned or deployed AMDs
 - -FY19 Synthesize AMD Toolbox for wider application
 - -Synergy with Zero Energy/Emission Vehicle (ZEV) districts
- Role and Potential of Signal Infrastructure (4.0)
 - -FY18 Data preparation, simulation tool selection (adaptation), scenario development through collaboration with other pillars
 - Scenarios relevant to the future SMART signal infrastructure and CAV deployment; data ready for simulation studies
 - –FY19 Development and execution of signal control schemes accounting for the progress path of signal infrastructure and potential CAV market share
 - Algorithm implementation and quantification of energy minimization benefits along with travel delays and greenhouse gas emissions

Any proposed future work is subject to change based on funding levels.

Summary

- SMART Mobility: Urban Science
 - -Urban/City-center perspective for impact of SMART technologies
 - -Emphasizes collaborative stakeholder engagement
 - -System-level modeling/assessment
 - -Exercise existing city transportation models on travelers and built environment (2.1&2.2)
 - -Extend/enhance urban data set and modeling methodology (2.3)
 - -Capture impacts of Automated Mobility Districts (2.4)
 - -Examine signal system role and optimal control strategies (4.0)

QUESTIONS?

