SAFT-USABC 12V Start-Stop Phase II 2017 DOE Annual Merit Review

Project ID: ES291

PI: Thomas Greszler and Alla Ohliger Presenter: Dr. Joong Sun Park SAFT America

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: 23 June 2015
- End date: 31 Dec 2017
- Percentage complete*: 73%

Barriers

- Cold cranking at -30°C
- High-temperature stability
- Control gassing

Budget

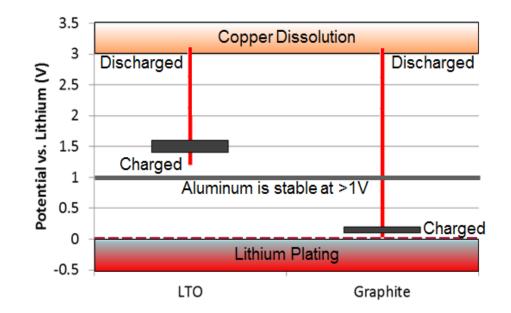
- Total program funding: \$6.1M
 - DOE share: \$3.05M
 - Contractor share: \$3.05M
- Funding for FY16: \$2.3M

Partners/Collaboration

- SAFT Cockeysville, SAFT Bordeaux, INL, Soulbrain, ForgeNano
- Project lead: SAFT Jacksonville

* As of April 2017

Objectives

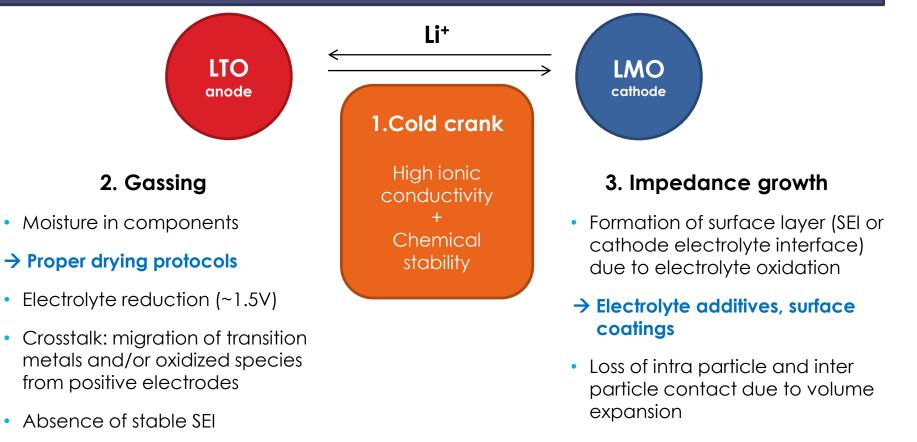

Develop advanced, high-performance battery module for 12V Start-Stop (12VSS) vehicle application:

- Develop cell electrochemistry based on SAFT's proprietary lithium titanate (LTO) lithium-ion battery technology and work undertaken in the Phase I development project with USABC
- Design and develop cell and module to meet USABC energy and cost targets
- Develop battery management and electronic controls
- Deliver cells and 12V test modules to USABC

Approach – Chemistry Based on LTO

Pros:

- No solid electrolyte interface (SEI) formation (ideally)
- Very fast charge capability (>7C)
- Storage and shipment at 0V


Cons:

- High-temperature durability issues
- Excessive gas generation
- High impedance growth
- Low energy density

Strategy to Meet USABC Electrochemistry Target

Optimize electrode and electrolyte formulation to stabilize electrode/ electrolyte interface without compromising cold crank at -30°C

 \rightarrow Optimize electrode formulations and active material structure

 \rightarrow Electrolyte additives, barrier

layer coating, optimized

electrode design

•

Technical Accomplishments

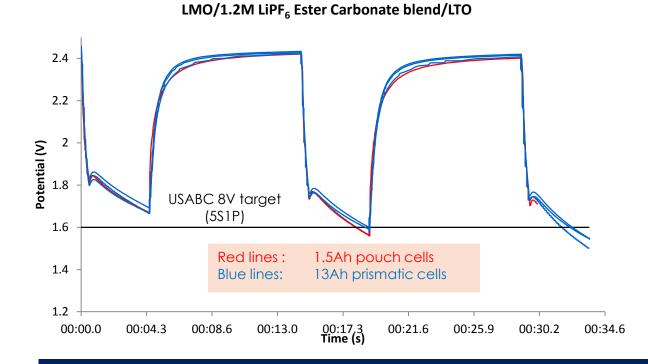
Electrochemistry development

- Delivered 1st set of cells to USABC (June 2016) and tested for cold crank and life performance (calendar & cycle life) for under hood condition (SAFT and Idaho National Laboratory (INL))
- Electrode development
 - Optimized LTO formulation to improve cold crank performance resulting in lower gassing rate compared to first deliverable cells – finalized formulation for 2nd deliverable cells
- Electrolyte development
 - Evaluated electrolyte solvent, salt mixture to find high conductivity, high boiling/flash point
 - Investigated impedance growth mitigation via film-forming additives

Mechanical/Module development

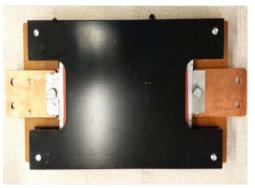
- Completed thermal analysis to simulate cell temperature under high temperature storage
- Completed cell swelling testing
- Completed 46Ah cell design

Electronic development


 Evaluated and down-selected suppliers for cost-effective battery monitoring system that provides voltage measurement, temperature measurement, cell balancing and data communication

Progress: 1st Cell Deliverables to USABC – Cold Crank

1.5Ah pouch cell and **13Ah** prismatic cell with lithium-ion manganese oxide (LMO)/LTO chemistry were delivered to INL


Cold cranking (0.5s of 6kW pulse and 4s of 4kW pulse) after

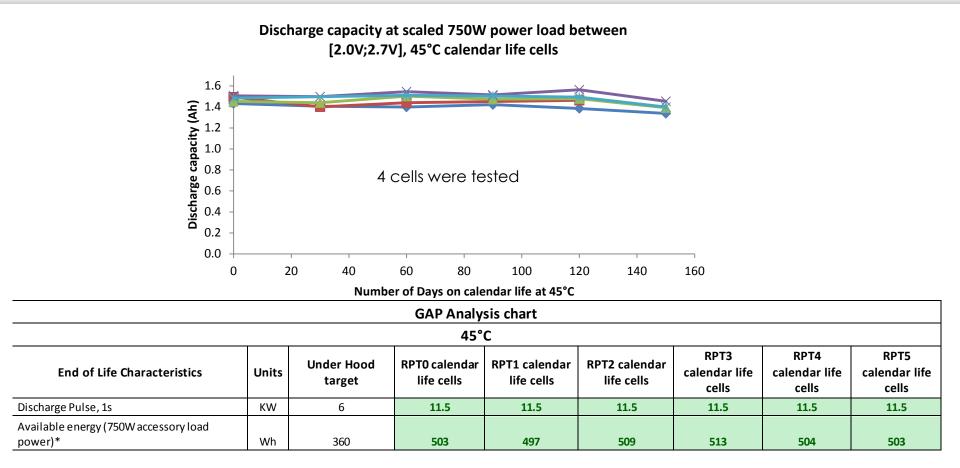
removing 360Wh (scaled) at -30°C, cells did not pass three

complete cold crank pulse series

No significant difference between formats

^{1.5}Ah pouch cell

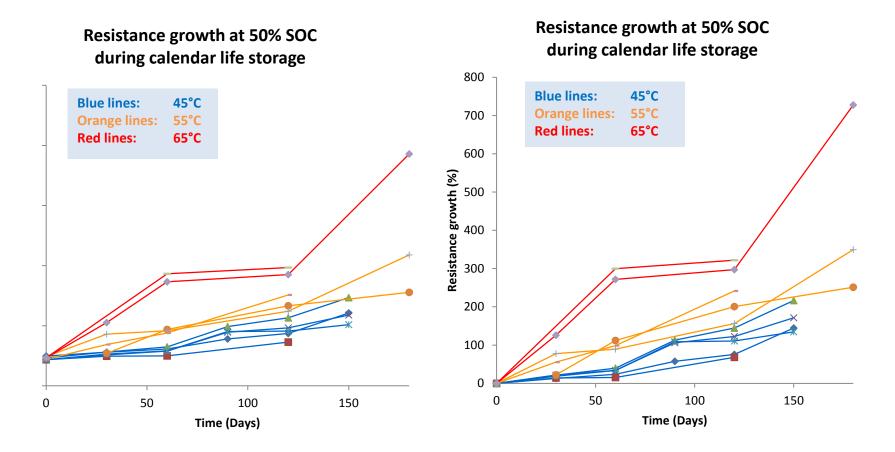
¹³Ah prismatic cell



ES291 2017 Meri† Re∨iew

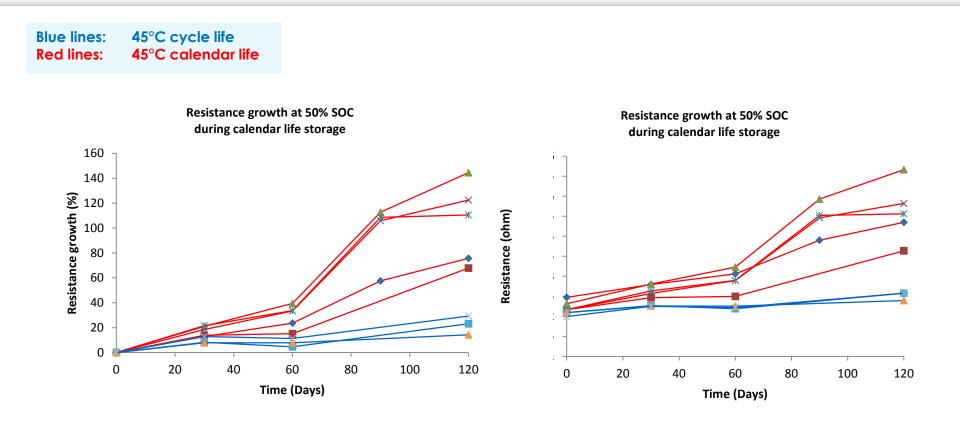
•

٠


Progress: 1st Cell Deliverables – Energy and Power Retention

- 1st cell deliverables stored at 45°C have almost no capacity loss
- 1st cell deliverables meet available energy and power requirements after RPT5

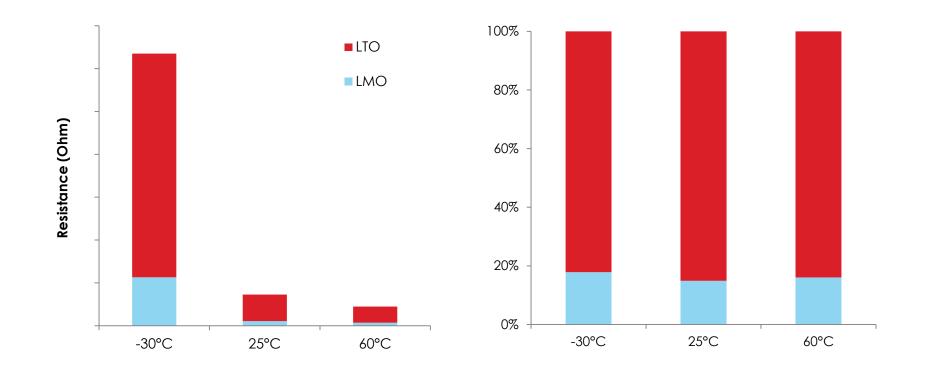
Progress: 1st Cell Deliverables Calendar Life – Impedance Growth


Cells at 45°C have an average resistance increase of X2.7 between RPT0 and RPT5

9 ES291 2017 Merit Review

For Public Use – No Restrictions

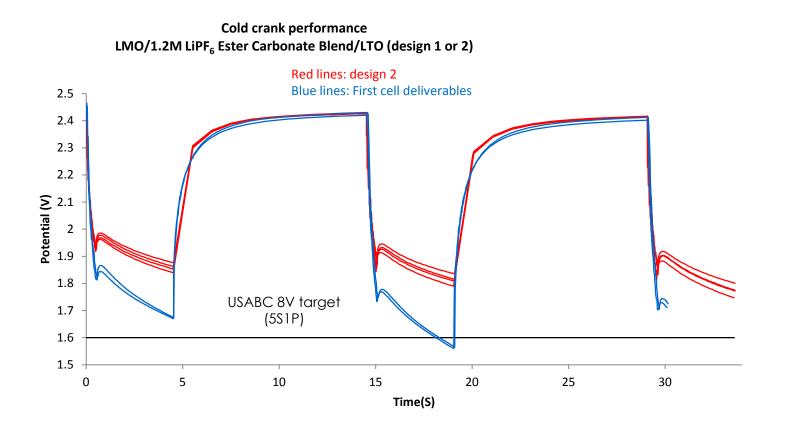
Progress: 1st Cell Deliverables Cycle Life – Impedance Growth



45°C cycle life cells' resistance growth is lower than the resistance growth of cells on calendar life testing at 45°C

For Public Use – No Restrictions

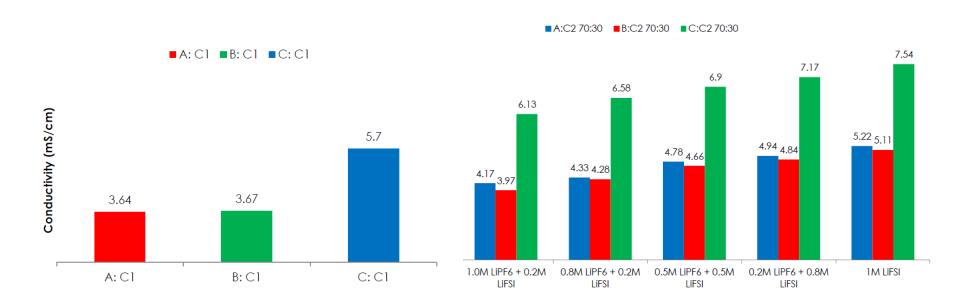
Progress: Electrode Development



LTO contributed ~80% total impedance at wide temperature range from HPPC

 Path forward: optimize formulation of LTO to improve cell performance at -30°C and stability at >45°C

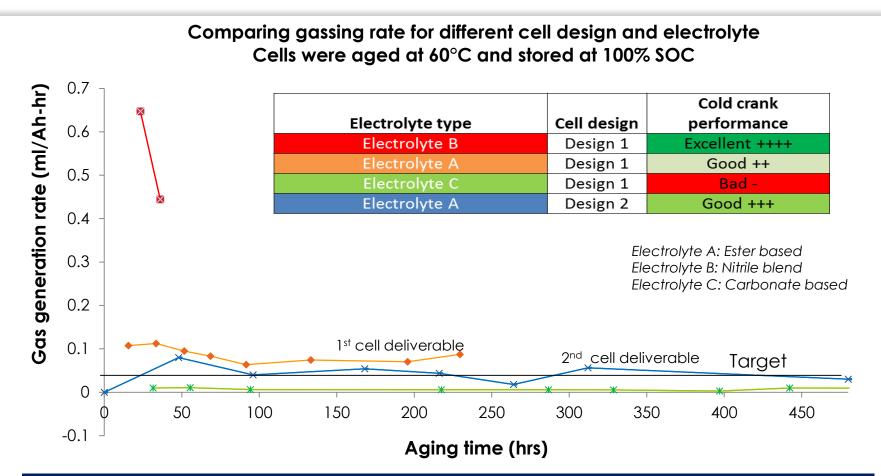
Progress: Electrode Development - Cold Crank Performance with New LTO Design



New LTO design 2/LMO chemistry passes all 3 cold crank pulses without compromising gassing

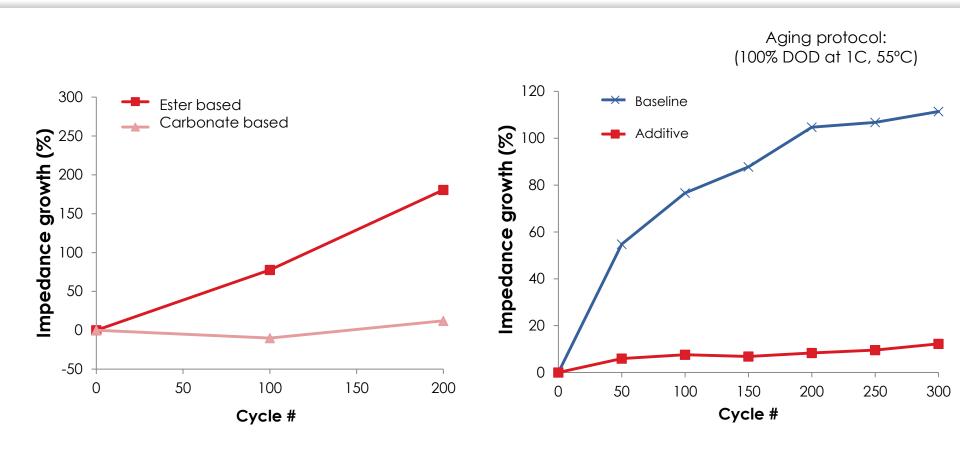
For Public Use – No Restrictions

Progress: Electrolyte Development – Solvent and Salt Blend



Ionic conductivity measurement at -30°C were tested to find suitable electrolyte systems give higher conductivity and high stability

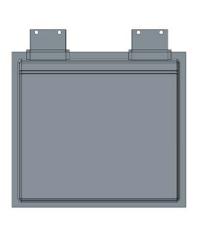
- Nitrile based solvent was excluded due to chemical instability
- Ester C and carbonate blend showed highest conductivity
- Addition of LiFSi salt improves ionic conductivity

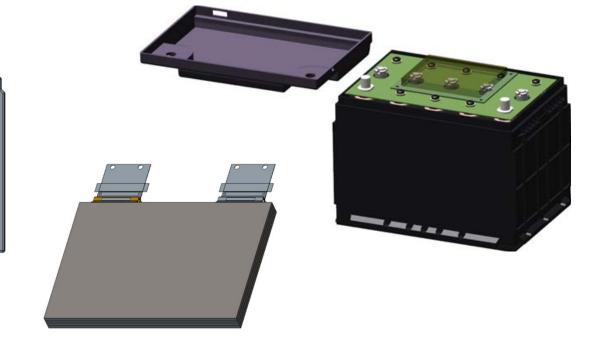

Progress: Electrolyte Development – Gassing

- Electrolyte selection and electrode formulations have shown to be critical to reduce gassing
- Optimizing the LTO electrode helped to decrease gassing while changes on the LMO did not contribute to gassing mitigation

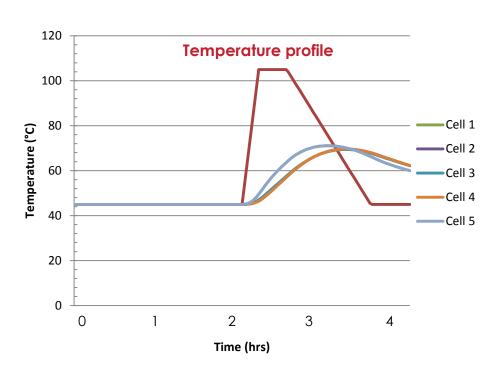
Progress: Electrolyte Development – Additive

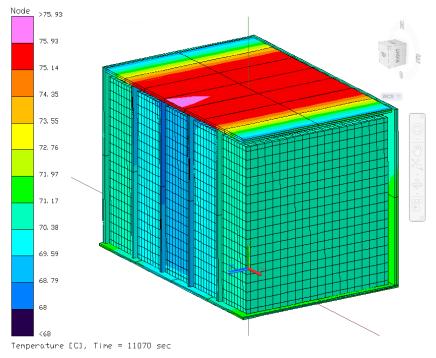
• Choice of electrolyte has a significant effects on impedance growth


• Impedance growth is prevented via film-forming additives


For Public Use – No Restrictions

Progress: Module Development – Mechanical Design


- Completed design for 46Ah pouch cell
- Swelling testing is being carried out to determine the mechanical impact of operation on the stack thickness over time
 - Initial preliminary tests were carried out on 1.6Ah pouch cells which demonstrated no significant impact over 1 week
- Identified tooling required to manufacture 46Ah pouch cells



Progress: Module Development – Thermal Analysis

Thermal analysis during survivability test (105°C for 15min) simulated that cell temperature doesn't increase above ~72°C

For Public Use - No Restrictions

Projected Cost for 46Ah Pouch Cells Module

Cost Breakdown				
Component Group	Usage per Module	Cost Each (\$)	Cost/ Module (\$)	Current Best projection with pouch cells module (\$) (@250k units/year)
Housing	1	5.00	5.00	5.05
Electronics Cover	1	2.00	2.00	0.24
Terminals	2	0.06	8.00	0.12
Electronics	1	10.00	10.00	10.00
Main Bus Strap	2	1.50	3.00	0.10
Cell to Cell Bus Strap	4	1.50	6.00	2.00
Addnl. Mechanical Parts	-	-	-	5.00
Temp sensor	1	1.00	1.00	1.00
Cell Stack Components	5	25.50	127.50	124.20
Pouch cell tabs	10	-	-	2.00
Pouch cell film	0.6m²	-	-	4.00
Cost Target	•	-	167.00	153.71

Future Work

- Further improvement in electrode formulation (e.g. porosity, binder, carbon percolation network) to decrease gassing while maintaining superior cold crank performance
- Surface coatings (ALD, dry-coatings) to mitigate gassing and impedance growth
- Electrolyte optimization (solvent, salt, and additive) to further improve life of LTO based cells at high temperature
- Module and system development to build prototype 12V SS

Our objective is to develop, manufacture and deliver 46Ah cells and modules, including an integrated electronic system, contained in a novel architecture, and to identify a path to full commercialization

Any proposed future work is subject to change based on funding levels

Summary

- 1st deliverable cells were built and delivered to USABC for cold crank and life testing
 - The cells pass energy/power requirement at RPT6 at 45°C
- 2nd deliverable cells LMO/LTO cells with optimized electrode formulations passed cold crank at -30°C after removing 360Wh scaled energy
- Electrolyte selection and electrode formulations are critical to reduce gassing
- Impedance growth can be mitigated via film-forming additives
- Mechanical and Module Electronics System developments are on-going to support USABC deliverable
- Current best projection of cost for pouch cell modules is of \$160 with 250K modules/year

Acknowledgements

Support for this work from USABC is gratefully acknowledged:

- Harshad Tataria (General Motors Co.)
- Matt Denlinger (Ford Motors Co.)
- Jacqueline Siegel (FCA, Chrysler Technology Center)
- Brian Cunningham (US Department of Energy)
- Lee Walker (Idaho National Laboratory)

Saft POC

 Alla Ohliger | Sr. Program Manager | SAFT SDD, <u>Alla.Ohliger@saftamerica.com</u>
107 Beaver Ct. | Cockeysville, MD 21030 | United States T: +1 4439334944 | M: +1 410-362-7917 | F: +1 410 771-0234

 Thomas Greszler | Chemistry Development Manager | SAFT SDD <u>Thomas.Greszler@saftamerica.com</u> 107 Beaver Ct. | Cockeysville, MD 21030 | United States T: +1 4105682590 | M: +1 443-519-8310 | F: +1 410 771-0234

 Joong Sun Park, Ph. D. | Sr. Research Scientist | SAFT SDD JoongSun.Park@saftamerica.com
107 Beaver Court | Cockeysville, MD 21030 | United States T: +1 4105686461 | F: +1 410 771-0234

 Carine Margez | Research Engineer | SAFT SDD Carine.Margez@saftamerica.com
107 Beaver Ct. | Cockeysville, MD 21030 | United States T: +1 4439334941 | F: +1 4107710234 | F: +1 410 771-0234

