POLYALKYLENE GLYCOL (PAG) BASED LUBRICANT FOR LIGHT- & MEDIUM-DUTY AXLES

ARUP GANGOPADHYAY
CHINTAN VED
NIKOLAUS JOST (PRESENTER)
FORD MOTOR COMPANY

JUNE 7, 2017

Project ID # FT023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

PRESENTATION OUTLINE

- I. OVERVIEW
- II. RELEVANCE AND SCOPE
- III. MILESTONES
- IV. PROJECT APPROACH AND STRATEGY
- V. Project Progression
- VI. TECHNICAL ACCOMPLISHMENTS AND PROGRESS
- VII. COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS
- VIII. REMAINING CHALLENGES AND BARRIERS
- IX. Proposed Future Work
- X. SUMMARY

OVERVIEW- HIGH LEVEL LOGISTICAL DETAILS OF PROJECT

TIMELINE

PROJECT START DATE: 10/1/2013
PROJECT END DATE: 9/30/2017

Percent complete: 75%

BARRIERS ADDRESSED

■ IMPROVED FUEL ECONOMY

■ USE OF NON-PETROLEUM BASED LUBRICANTS (ENERGY INDEPENDENCE)

■ No-harm on emissions

PARTNERS

PROJECT LEAD: FORD MOTOR COMPANY

COLLABORATORS: **Dow Chemical**

(NOT ACCEPTING DOE FUND)

ARGONNE NATIONAL LABORATORY (ANL)

BUDGET

TOTAL PROJECT FUNDING \$700,000

DOE SHARE \$350,000

CONTRACTOR SHARE \$350,000

EXPENDITURE OF GOVT. FUNDS

FY13: \$473

FY14: \$13,321

FY15: \$22,324

FY16: \$7,229

(ANL FUNDING NOT INCLUDED)

RELEVANCE AND SCOPE

PROJECT OBJECTIVE

 DEVELOP NOVEL LUBRICANT FORMULATIONS THAT ARE EXPECTED TO IMPROVE THE FUEL EFFICIENCY OF LIGHT, MEDIUM, HEAVY-DUTY, AND MILITARY VEHICLES BY AT LEAST 2% OVER SAE 75W-140 AXLE LUBRICANTS WITHOUT ADVERSE IMPACTS ON VEHICLE PERFORMANCE OR DURABILITY.

OBJECTIVES FOR THIS PRESENTATION

- POLYALKYLENE GLYCOL FORMULATION ITERATIVE DEVELOPMENT
- FRICTION AND WEAR DATA ON LABORATORY BENCH TESTS
- POLYALKYLENE GLYCOL PERFORMANCE IN AXLE TESTING

Relevance to Vehicle Technology Office Objectives

- REDUCE PETROLEUM CONSUMPTION BY IMPROVING FUEL ECONOMY
- REDUCE ENERGY DEPENDENCE BY USING NON-PETROLEUM BASED LUBRICANTS.

IMPACT

- Reduce fuel consumption (Save 0.13 billion gallons of petroleum fuel per year 1,2)
- New Lubricant Technology has no negative impact on durability and emissions
 - 1 http://www.nada.org/NR/rdonlyres/C1C58F5A-BE0E-4E1A-9B56 1C3025B5B452/0/NADADATA2012Final.pdf
 - 2 http://www.epa.gov/fueleconomy/fetrends/1975-2012/420s13001.pdf

MILESTONES — PROJECT BUDGET TIMING AND EXPECTATIONS

MILESTONE DESCRIPTION	Түре	STATUS							
BUDGET PERIOD 1									
Define initial PAG lubricant formulations	TECHNICAL	COMPLETED							
DEFINE ADDITIVE COMPONENTS	TECHNICAL	ITERATIVE							
SELECT LUBRICANTS SHOWING FRICTION AND WEAR CHARACTERISTICS (ON PRELIMINARY BENCH FRICTION & WEAR TESTS) EQUAL TO OR BETTER THAN 75W-140 LUBRICANT	Go / No-Go	ITERATIVE							
BUDGET PERIOD 2									
DEMONSTRATE FORMATION OF DURABLE ANTIWEAR FILM	TECHNICAL	ITERATIVE							
DEMONSTRATE THERMAL PERFORMANCE OF FORMULATIONS	TECHNICAL	COMPLETED							
SELECT LUBRICANTS SHOWING FRICTION AND WEAR CHARACTERISTICS EQUAL TO OR BETTER THAN 75W-140 LUBRICANT	Go / No-Go	COMPLETED							
BUDGET PERIOD 3									
DEMONSTRATE 2% IMPROVEMENT IN VEHICLE LEVEL FUEL ECONOMY	TECHNICAL	PENDING							
DEMONSTRATE DURABILITY IN SYSTEM (AXLE) LEVEL TEST	TECHNICAL	In Progress							
AXLE EFFICIENCY SHOWING IMPROVEMENT OVER 75W140 LUBRICANT	TECHNICAL	In Progress							

6/7/2017 Ford Motor Co. FT023 5

PROJECT APPROACH AND STRATEGY

1.	BENC	H TEST SCREENIN	<u>vg</u> : P	AG INITIAL AND ITERATIVE FORMULATION
	DEVE	LOPMENT		
	_ _	TOST 4 BALL-WEAR FALEX-EP	_ _ _	BALL ON DISC RUST PREVENTION COPPER CORROSION
2.	SYSTE	M LEVEL INDUST	RY S	TANDARD TESTING: PAG TESTING IN ASTM
	STANI	DARDIZED AXLE T	ESTS	
	_ _ _	THERMAL AND OXIDATING LOAD CARRYING CAPACI	/e Stab ty und	THE REPORT OF TH
3.				TEST: FORD SPECIFIC AXLE TESTING,
	EFFICI	ENCY AND FUEL E	ECON	OMY TEST
		FORD 44 HOUR HYPOIL		
	_			FCONOMY AND VEHICLE FEELCIENCY

PROJECT PROGRESSION — ACCOMPLISHMENT ALIGNMENT WITHIN STRATEGY

6/7/2017

LESSON LEARNED FROM GEN I [17-2] FORMULATION DEFICIENCIES

THE [17-2] FORMULATION WAS TESTED WITH 4
BALL WEAR AFTER COMPLETING MTM TESTING AND
SHOWED HIGHER WEAR COMPARED TO VIRGIN FLUID.

TRIBOFILM ANALYSIS SHOWS THAT <u>HIGHER SULFUR</u>

<u>CONTENT</u> AND <u>THE ABSENCE OF PHOSPHOROUS</u> IN THE

TRIBOFILM DIRECTLY CORRELATES TO INCREASED OBSERVED

WEAR IN THE 4 BALL WEAR TEST. THE FAILING L-37

PERFORMANCE OF [17-2] CAN BE ATTRIBUTED TO THIS

OBSERVED PHOSPHOROUS DEPLETION.

OSP FORMULATION [A] AND [K] PASS SYSTEM LEVEL TESTING, L-37

OSP PAG AW0704-A										
Gear Condition Ring Rating Pinion Rating Minimum Required										
Wear	8	7	5							
Rippling	10	9	8							
Ridging	9	9	8							
Pitting/Spalling	9.9	9.9	9.3							
Scoring	10	10	10							

POST L-37 TEST ICP SHOWS AW0704-A OBJECTIVELY HAS LOWER WEAR INDICATING METALS IN SUSPENSION

POST L-37 TEST SEM/EDS SHOWS AW0704-A OBJECTIVELY DELIVERED MORE PHOSPHOROUS TO THE GEAR SURFACE FOR BETTER WEAR PROTECTION

OSP [A] FORMULATION AXLE EFFICIENCY

- THE BARS IN BLUE ARE REPRESENTATIVE OF THE PERCENT EFFICIENCY OF AW0704-A MINUS THE PERCENT EFFICIENCY OF 75W-140 AT EACH RESPECTIVE STAGE.
- THE BARS IN RED ARE REPRESENTATIVE OF THE AXLE TEMPERATURE OF **75W-140** MINUS THE AXLE TEMPERATURE OF **AW0704-A** AT EACH RESPECTIVE STAGE.

OSP FORMULATION [A] FAILS SYSTEM LEVEL TESTING, L-42

■ AW0704-A EXHIBITED SIGNIFICANT SCORING ON BOTH DRIVE AND COAST SIDE OF THE RING AND

PINION GEARS — TEST FAILED

KEY NOTE: TECHNICIANS AT INTERTEK REPORTED THAT THERE WAS NOTICEABLE FOAMING OF **AW0704-A** WHEN THE AXLE WAS OPENED FOR GEAR RATING INSPECTION

OSP FORMULATION SULFUR DELIVERY AND ANTIFOAM OPTIMIZATION

KEY NOTE: FOAMING WAS OBSERVED AGAIN DURING THE AW0704-R L-42 RETEST.

		Foam Tendency, Static Foam, mL						
ASTM D892 / D6082	Temp, °C	AW0704-A	AW0704-R	AW0704-BN				
Sequence I	24.0	545	530	50				
Sequence II	93.5	310	630	65				
Sequence III	24.0	545	530	40				
Sequence IV	150.0	640	>950	60				

BASE FLUID CHANGE REQUIRED FOR SAFETY AND TOXICOLOGY REQUIREMENTS

AW0704 VI = 217 New base fluid = VI 225

50hour 162°C TOST Test

Fluids	Delta TAN	% change in viscosity
AW0704A base fluid	2.1	17
New base fluid	1.1	11

THE BASE FLUID FOR AW0704-A AND AW0704-R DOES NOT MEET FORD TOXICOLOGY STANDARDS FOR HEALTH AND SAFETY. NEW BASE OIL USED FOR AW0704-BN.

ALTERNATIVE BASE FLUID SHOWING COMPARATIVE PROPERTIES SELECTED AS REPLACEMENT. THE KEY DIFFERENCE IS MOLECULAR WEIGHT OF THE POLYMER CHAINS.

EVIDENCE OF PRECIPITATE IN OSP FORMULATION [BN]

- CLOUDINESS SHOWS EVIDENCE OF PRECIPITATE
- NO NOTICEABLE CORRELATION WITH THE PRESENCE OR ABSENCE OF OTHER SPECIFIC ADDITIVES.
- SUSPECTED SALT FORMATION INVOLVING ACTIVE SULFUR AND/OR PHOSPHATE ESTER ADDITIVES.

APPROX. 30% OSP ADDITION TO GEAR OIL

COMPARATIVE WEAR SCAR DATE FOR OSP TREATED GEAR OIL OPTIONS IN 4-BALL WEAR TEST, CONDITIONS AT 40 KG LOAD, 2 HRS, 600 RPM AND 100 °C

OPTION **AU6615-C** HAS BEEN SELECTED TO CONTINUE WITH BENCH TESTING AND AXLE LEVEL EVALUATIONS

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

COLLABORATORS	RESPONSIBILITIES AND CONTRIBUTION
FORD MOTOR CO. PROJECT LEAD	 PROJECT APPROACH AND DIRECTION PROPRIETARY AXLE AND VEHICLE TESTING
DOW CHEMICAL COLLABORATOR (NOT ACCEPTING DOE FUNDING)	 PAG OIL FORMULATIONS DEVELOPMENT VISCOMETRIC CHARACTERIZATIONS, BENCH SCREENING HARDWARE SURFACE ANALYTICS
ARGONNE NATIONAL LAB SUBCONTRACTOR	 LABORATORY BENCH TESTS FOR FRICTION AND WEAR EVALUATION TRIBOLOGY EXPERTISE AND ANALYTICS FOR UNDERSTANDING TRIBOFILM AND FRICTION REDUCTION MECHANISM
INTERTEK HIRED SERVICE	■ CONDUCTED L-37 AND L-42 TESTING
SOUTHWEST RESEARCH INSTITUTE HIRED SERVICE	■ CONDUCTED L-60 TESTING

REMAINING CHALLENGES AND BARRIERS

- SOLVE PRECIPITATE ISSUE WITH [BN] FORMULATION;
 IMPROVE FORMULATION TO PASS L-42
- DEMONSTRATE MOISTURE CORROSION RESISTANCE ON L-33-1 TESTING
- DEMONSTRATE WEAR, EFFICIENCY, AND FUEL ECONOMY IMPROVEMENT ON FORD SPECIFIC AXLE AND VEHICLE TESTING
- Lack of Participation of any additive company
- ENVIRONMENTAL AND TOXICOLOGY REQUIREMENTS FOR SAFETY
- AVAILABILITY OF TEST RESOURCES: L-42 THROTTLE CONTROLLER ISSUES

PROPOSED FUTURE WORK

REMAINING FY17

- EXPLORE OPTIMIZATION OF PAG FORMULATION
- ASSESS [AND RE-ASSESS] PERFORMANCES OF PAG OPTION AND TOP TREAT OPTION IN:
 - L-33-1 TEST (MOISTURE CORROSION RESISTANCE)
 - L-42 TEST (SHOCK LOADING)
 - FORD AXLE WEAR AND EFFICIENCY AND VEHICLE FUEL ECONOMY TESTING
- CONTINUE TO BUILD UNDERSTANDING OF FRICTION REDUCTION MECHANISM

ANY PROPOSED FUTURE WORK IS SUBJECT TO CHANGE BASED ON FUNDING LEVELS

SUMMARY SLIDE

ACHIEVEMENT TO SCOPE OF PROJECT

- ☑ PAG FORMULATIONS HAVE CONSISTENTLY EXHIBITED PERFORMANCE IMPROVEMENTS COMPARED TO
 BASELINE GEAR OILS IN BENCH FRICTION AND WEAR TESTING
- ✓ PAG FORMULATION [A] PASSED L-37 LOAD CARRYING CAPACITY TESTING: MAJOR IMPROVEMENT TO GEN I PAG PERFORMANCE
- ✓ PAG FORMULATION [A] PASSED L-60 THERMAL OXIDATIVE STABILITY TESTING
- ✓ PAG FORMULATION [A] EXHIBITED IMPROVED TEMPERATURE PROFILE AND EFFICIENCY IN FORD MULTI-STAGE AXLE EFFICIENCY
- □ Positive friction and wear results for top treat option present another option for incorporating PAG technologies

Shortcomings of PAG formulations

- Multiple PAG formulations failed L-42 shock loading testing
- BALANCING OF ADDITIVE PACKAGES FOR SPECIFIC PERFORMANCE ATTRIBUTES PROVING TO BE BOTTLENECK FOR PROJECT, AS SHOWN IN **[BN]** PRECIPITATE
- Necessary to validate derivative formulations in previously completed system level standard testing
- ☐ HAVE YET TO COMPLETE **L-33-1 MOISTURE CORROSION RESISTANCE TESTING** WITH A PAG
- HAVE YET TO EVALUATE PERFORMANCE OF PAG IN FORD AXLE WEAR AND VEHICLE EFFICIENCY AND FUEL ECONOMY TESTING

TECHNICAL BACK-UP SLIDES

- 1] GEN 2 PAG AND OSP FORMULATION DEVELOPMENT
- 2] OSP L-37 PERFORMANCE DATA
- 3] L-60 Performance Data
- 4] SULFUR DELIVERY OPTIMIZATION EXTREME PRESSURE IMPROVEMENT
- 5] TOP TREAT BENCH FRICTION AND WEAR DATA

GEN 2 AND OSP FORMULATION DEVELOPMENT

	тоз	ST T		Ball on Disc						
Formulation	Viscosity Increase (%)	TAN Change (Δ)	4 Ball Wear (mm)	Falex EP (lb)	4 Ball EP (kg)		Disc Wear (mm)	ANL Ball on Disc Wear Volume (mm ³)	Rust Prevention	Copper Corrosion
OEM 1	20	1.75	0.92	2505	340	0.63	0.54	5.9E-13	PASS	1B
75W-140	20	1.5	0.42	2807	420	0.44	0.41	2.3E-14	PASS	2A
17-2 [58-1]	4.7	0.4	0.58	3609	400	0.48	0.47	1.14E-12	PASS	1B
AW0703-K	8.6	0.87	0.44	3623	320	0.32	0.3	2.81E-14	PASS	1B
AW0704-A	3.9	1.26	0.36	2885	280	0.32	0.31	5.34E-14	PASS	1B
AW0705-D	11.5	0.7	0.42	4000	260	0.39	0.28	7.28E-14	PASS	1B
AW0705-F	14.7	1	0.41	2926	280	0.38	0.34	1.57E-14	PASS	1B

GEN II PAG FORMULATIONS: GENERATED FROM CHEMISTRY CHANGES AND ADDITIVE PACK ADJUSTMENTS TO 17-2 FORMULATION, DIFFERENCE BETWEEN OPTIONS ARE AD-PACK DIFFERENCES

OSP (OIL SOLUBLE PAGS) OPTION EXPLORED, DIFFERENCES BETWEEN FORMULATIONS ARE THE SAME AD-PACK DIFFERENCES IN GEN II PAGS.

OSP FORMULATION L-37 PERFORMANCE

OSP PAG AW0703-K									
Gear Condition Ring Rating Pinion Rating Minimum Required									
Wear	7	6	5						
Rippling	10	8	8						
Ridging	8	8	8						
Pitting/Spalling	9.9	9.9	9.3						
Scoring	10	10	10						

OSP PAG AW0704-A										
Gear Condition Ring Rating Pinion Rating Minimum Required										
Wear	8	7	5							
Rippling	10	9	8							
Ridging	9	9	8							
Pitting/Spalling	9.9	9.9	9.3							
Scoring	10	10	10							

L-60 Performance Data

THE **L-60 TEST (ASTM D5704)** SHOWS THE OIL-THICKENING, INSOLUBLES FORMATION, AND DEPOSIT FORMATION OF MANUAL TRANS/FINAL DRIVE AXLE LUBRICANTS TO HIGH TEMP OXIDIZING CONDITIONS

AFTER PASSING THE L-37 DURABILITY TESTING FORMULATIONS AW0704-A, AW0704-F, AW0704-BN, AND AU6615-E WERE SUBMITTED FOR L-60 TESTING

		Vis	cosity		Pentane		Avg.	Δνα	
	Initial	After 50 hr	Chan ge	% Change	Insolubles	Toluene Insolubles, % wt.	Carbon/ Varnish (merits)	Avg. Sludge (merits)	
AW0704-A	11.36	11.58	0.22	2	4.69	0	9.5	9.5	
AW0705-F	10.16	10.86	0.7	7	2.2	0.2	9.8	9.5	
AW0704-BN	10.92	11.04	0.12	1	15.7	0.7	7.0	9.5	
AU6615-E	11.09	14.67	3.58	21	0.1	0.2	9.9	9.5	

OSP FORMULATION [A] SULFUR DELIVERY OPTIMIZATION, L-42

		Wear Tests			EP Tests		TOST Results			
	Formulation Number	4 Ball wear (mm)	B.O.D. Disc wear (mm)	B.O.D. Ball Wear (mm)	Falex EP (lb)	4 Ball EP (kg)	ΔTAN	Viscosity Increase, %	Rust Prevent ion	Copper Corrosi on
Baseline	75W-140	0.42	0.44	0.41	2807 3041	420	1.50	20.0	PASS	2A
000	AW0704-A	0.36 0.42	0.32	0.31	2885	315	1.26	3.9	PASS	1B
OSP	AW0704-R	0.49	0.36	0.22	>4500	400	1.8	4.5	PASS	1B
	AW0704-W	0.38	0.35	0.22	4172	315	1.3	5.4	PASS	1B

[■] BENCH SCREENING SHOWED THAT **AW0704-R** WAS THE STRONGEST CANDIDATE, AND IN L-42 RE-TEST, IT SHOWED IMPROVED RESULTS TO **AW0704-A** BUT STILL DID NOT PASS

TOP TREAT BENCH FRICTION AND WEAR DATA

