

Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing

William Woodford 24M Technologies, Inc. June 8, 2017

Project ID# ES245

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Timeline

- Project start: 1 Oct 2014
- Project end: 30 Sept 2016
- Percent complete: 100%

Budget

- Total project funding
 - DOE share: \$1,945,774
 - 24M share: \$658,940
- Funding received in FY16
 - DOE share: \$868,975
 - 24M share: \$245,653

Barriers

- Cost current costs are three times too high on a kWh basis
- Performance High energy density battery systems are needed to meet both volume and weight targets
- Abuse tolerance, reliability, ruggedness – many Li-ion batteries are not intrinsically tolerant to abusive conditions

Partners

24M Technologies - LEAD

Executive Summary: Company at Major Inflection Point

- Transitioning from R&D to commercialization:
- Transformative Li-ion battery technology
 - Invented at MIT
 - Commercialized by 24m
- Semisolid Li-ion lowers battery COGS, improves safety
 - Reduces COGS by 30%, targeting < \$90/kWh by 2020
 - Proven: 15,000 cells made to date on pilot production line
- Semisolid Li-ion simplifies Manufacturing process
 - ~50% reduction in overall CapEx per MWh of capacity
 - Enables modular, distributed manufacturing
 - Requires only 1/20th the capital per capacity block

Next generation Li-ion with MIT roots, world class investors, first deal signed, scaling production

Experience

Founders: Yet-Ming Chiang, W. Craig Carter, Throop Wilder

Deep battery & Mfg experience

Direct access to MIT lab advancements

Capital

\$75MM in equity \$8MM in US programs

Top-tier venture capital Global industrial partners

Prestigious programs ARPA-E, DOE-VT, USABC

Business

32,000 ft² pilot facility 15,000+ cells built

Commercialization begun First deal signed

33 Patents issued73 pending globally

24m

4 6/8/2017

Design Challenge: Too much inactive material

Solution: Semi-solid Li-ion

Manufacturing Challenge: Complex, wet/dry/wet operations

Inherent Materials Cost Advantage

Thick electrodes reduce or eliminate inactive materials, leading to radically cost-reduced and application-enabling economics

Components		24M BOM Adv Conventional	vantage 24M
Cathode	LFP	100%	
	Carbon	100%	
	Electrolyte	100%	-4%
	Al. Foil	100%	-61%
	NMP	100%	-100%
	Binder	100%	-100%
Anode	Graphite	100%	
	Carbon	100%	
	Electrolyte	100%	-12%
	Copper foil	100%	-63%
	Binder	100%	-100%
Package	Separator	100%	-82%
	Pouch	100%	-49%
	Tab/Tape	100%	-52%
TOTAL:		100%	30%

Use of traditional, off-theshelf active materials

Drastic reduction of costly inactive materials

Elimination of processspecific components

24m

6 6/8/2017

Lithium-ion Manufacturing

Elimination of many process steps drives down costs and reduces overall footprint

	Traditional	247		
Capital Cost	\$200k per MWh	\$100k per MWh		
Min Efficient Production	500MWh	150MWh		
Min Capital Required	\$250M	\$15M		
COGS	\$150/kWh	\$90/kWh		
Operating Costs	-	50%		
Footprint	-	25%		

Simpler, lower cost, lower risk.

Relevance

- Program Objective: Re-invent the Li-ion battery from electrode design through high volume manufacturing
 - Demonstrate that 24M's novel electrode and manufacturing approach can be scaled to mass production suitable for automotive applications.
 - Novel electrode architecture that enables abuse tolerant battery systems.
 - Reduction of inactive
 materials that translates to
 higher energy density battery
 systems with a simpler
 architecture

13,000+ prototype cells built

- Fewer unit operations
- 1/3rd the capex of conventional Li-ion
- Ability to reach economies of scale without requiring ~\$500M capital investment

120 MWh Line: Capex: \$15M, \$125k per MWh/yr Throughput

- 24M CapEx is ~50% of conventional for same output
- Requires 1/20th the initial CapEx of conventional Li-ion
- Uses 1/4 the space of conventional plants
- Scalable to GWh in demand-matching steps
- Can place factories near centers of demand

24m

Milestones – ALL Completed

Work Stream	Task Description	2014 Q4	2015 Q1	2015 Q2	2015 Q3	2015 Q4	2016 Q1	2016 Q2	2016 Q3
1	Increase anode volume loading percentage	Milestone Complete			Milestone Complete			Milestone Complete	
2	Increase cathode volume loading percentage		Milestone Complete				Milestone Complete		
3	Implementation of automated forming of anode and cathode electrodes			Milestone Complete					
4	80 cm² electrode yield			Milestone Complete					
5	80 cm ² format cell manufacturing quality		Milestone Complete		Go/No-Go Deliverables Delivered				
6	Increase electrode footprint 260+ cm ²		Milestone Complete			Milestone Complete			
7	Meet electrode quality metrics for production quality at footprint >260 cm ²			Milestone Complete			Milestone Complete		
8	260+ cm ² electrode yield				Milestone Complete				Milestone Complete
9	260+ cm ² format cell manufacturing quality						Milestone Complete		Deliverables Delivered

80 cm² cell

- Milestone 1.1: Anode volume loading +3%
- Milestone 1.2: Anode volume loading +5%
- Milestone 1.3: Anode volume loading +10%
- → +10% achieved
- Milestone 2.1: Cathode volume loading +3%
- Milestone 2.2: Cathode volume loading +5%
- → +10% achieved
- Milestone 3.1: F80 electrode quality
- → Weight and thickness tolerance demonstrated
- Milestone 4.1: F80 electrode yield
- → Target electrode yield achieved based on weight and thickness
- Milestone 5.1: F80 cell yield
- → Target cell yield 80% yield based on capacity and impedance
- Deliverable 5.2: 10 cells shipped to ANL
- → 10 cells built and shipped to ANL 10/7/16

$>260 \text{ cm}^2 \text{ cell}$

- Milestone 6.1: Anode and cathode electrodes with larger footprint
- → Cathode and Anode electrodes successfully formed with area of 260 cm²
- Milestone 6.2: Anode and cathode electrode with larger footprint using HVM
- → Cathode and Anode electrodes successfully formed with area of 260 cm² using high volume manufacturing method
- Milestone 7.1: F260 electrode quality
- → Target electrode quality demonstrated in large-format electrodes
- Milestone 7.2: F260 electrode quality using HVM
- → Target electrode quality demonstrated in large-format electrodes made using high volume manufacturing method
- Milestone 8.1: F260 electrode yield
- → Target large-format electrode yield achieved
- Milestone 8.2: F260 electrode yield
- → Target large-format electrode yield achieved
- Milestone 9.1: F260 cell build yield
- → Target cell yield achieved with >100 Ah cells based on capacity and impedance
- Deliverable 9.2: 4 cell shipped to ANL
- Target cell yield achieved with >100 Ah cells based on capacity and impedance

All program work is completed

24m

- 24M has met all program milestones
- Specific accomplishments are
 - Increasing energy density of semi-solid electrodes
 - Developing and implementing electrode-level quality metrics
 - Demonstrating quality and yield for the manufacturing method at the 80 cm² electrode footprint
 - Delivering demonstration cells to Argonne National Laboratory for independent testing
 - Scaling the electrode forming processes were scaled to a large-format (> 260 cm²)
 electrode footprint
 - Demonstrating quality and yield for the large-format electrodes
 - Developing and demonstrating a high-volume manufacturing approach for large-format electrode fabrication
 - Demonstrating quality for the large-format electrodes formed by the high volume manufacturing method
 - Prototyping and delivering large-format cells (> 100 Ah capacity) with consistent capacity and impedance which were delivered to Argonne National Laboratory for independent testing
- 24M continues work on the scale-up for manufacturing processes building off the methods developed and demonstrated during this program

24 m