

High Electrode Loading EV Cell

William Woodford 24M Technologies, Inc. June 7, 2017

> Project ID# ES332

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Timeline

- Project start: 15 June 2016
- Project end: 14 June 2019
- Percent complete: 33%

Budget

- Total project funding
 - DOE share: \$3,499,297
 - 24M share: \$3,499,297
- Funding received in FY16
 - DOE share: \$303,095
 - 24M share: \$303,095
- Funding for FY17
 - DOE share: \$1,115,930
 - 24M share: \$1,115,930

Barriers

- Cost current costs are three times too high on a kWh basis
- Performance High energy density battery systems are needed to meet both volume and weight targets
- Abuse tolerance, reliability, ruggedness – many Li-ion batteries are not intrinsically tolerant to abusive conditions

Partners

• 24M Technologies - LEAD

- Re-inventing the Li-ion Battery
 - Cost reduction down to 50% of today's cost
 - Higher energy density, safer systems
- Dramatically simpler manufacturing
 - Half the CapEx of conventional Li-ion
 - Scale in small increments (1/10th conventional)
- Unlocks \$100B+ market
 - First market: stationary storage
 - Next market: electric transportation
 - Customer, partner MoUs signed > 1 GWh
- Accelerating commercialization
 - Series Close: 1Q2017
 - Customer Sampling: 2016-2017
 - Factory Complete: end-2017
 - High Volume Production: mid-2018

http://borgsolar.com/solutions/

http://bjackcity.com/douglas/index.php?p= powersubstation

http://photoelectricdreams.blogspot.com/2014_01_01_archive.html

Company Facts

- Summary
 - Experienced management team
 - Top Li-ion talent, 60+ employees
 - 32,000 sq.ft. in Cambridge, MA
 - 4,000 sq.ft. dry room
 - 2000+ test channels
- Timeline
 - 2010-13: R&D proves technology
 - 2014-16: Automated line, sampling
 - 2017-18: Scale to first factory with partner
- IP Capture:
 - 20 issued patents, 80+ pending
- Funding:
 - Equity: \$74.5M (VC, Strategic)
 - DOE Awards: \$8M to date
 - USABC Award: \$7M program

Relevance

- Program Objective: Develop and demonstrate EV-capable cells based on 24M's semi-solid electrode technology
 - Increase the energy density of semi-solid electrodes through chemistry and cell design improvements
 - Demonstrate that 24M's novel electrode and manufacturing approach can be scaled to mass production suitable for automotive applications.
 - Novel electrode architecture that enables abuse tolerant battery systems.
 - Reduction of inactive materials that translates to higher energy density battery systems with a simpler architecture

13,000+ prototype cells built

Cell Design Challenges

25 separate layers, 14 inactive material layers in 1mm cross section

Inactive material fraction too high. Inactive material cost % too high.

Manufacturing Challenge: Complex, wet/dry/wet operations

Electrode Creation	Mix Anode	Mix Cathode	
	Coater & Inspection	Coater & Inspection	
	Slitter & Cleaning	Slitter & Cleaning	
	Press/Calendar	Press/Calendar	
	Die Punch	Die Punch	
	Clean & Buffer	Clean & Buffer	
	Vacuum Drying	Vacuum Dry	

Complex and expensive operations with multiple yield sensitivities

Semisolid Lithium-ion

24 Flowable high energy density lithium-ion Simpler device architecture, disruptive electrodes low-cost manufacturing method ••• X•• Li-ion Tablet Battery 1 ···*· Li-ion Tablet Battery 2 ···• EV cell 24M Conventional 26650 LFP power tool cell 14 Area Capacity (mAh/cm²) 12 10 24 H₃CO Same scale 8 2C 6 4 2 Novel semi-solid electrode form 0 15 0 10 Current Density (mA/cm²) 260 um

Materials design

24 m

24M Cell Design Has Unique Abuse Tolerance

	Result	
EUCAR rating	EUCAR 1	
Venting	No	
Max Temp	Ambient	

6

SIDE CRUSH

Milestones/Deliverables

Description of Milestone or Deliverable	Target Date St	atua
Description of Milestone or Deliverable	Target Date St	
Kick-Off	6/15/2016	Completed
Baseline Cell Gap Analysis Completed	12/14/2016	Completed
Gen1 Safety Design Review	1/25/2017	Completed
Cost Model Alignment	3/16/2017	Completed
Gen2 Cathode Active Material Down-selection	6/14/2017	Completed
Anode Active Material Down-selection (2-3 materials)	6/14/2017 In	Progress, Delayed
Phase 1 Deliverables (GO/NO GO) (D1.1)	6/14/2017	In Progress
Gen2 Electrolyte Lock (RT Life + HT stability)	8/4/2017	In Progress
60 vol% Loading Cathode	10/30/2017	In Progress
Gen2 Alloy Anode Blend Formulation	11/29/2017	In Progress
Next Gen Coating Process Proof-of-Principle	12/27/2017	Future Work
Gen3 Electrolyte Lock	1/22/2018	Future Work
Gen2 Safety Design Review	3/16/2018	Future Work
Cathode Material Lock	6/14/2018	Future Work
Anode Material Lock	6/14/2018	Future Work
Active Materials Lock	6/14/2018	Future Work
Phase 2 Deliverables (GO/NO GO) (D2.1)	6/14/2018	Future Work
Next Gen Coating Process Down-Select	9/14/2018	Future Work
Gen3 Cell Safety Design Review	12/14/2018	Future Work
Final Electrolyte Lock	12/14/2018	Future Work
Deliver >250cm ² footprint Cells (D3.1)	12/14/2018	Future Work
Phase 3 Deliverables (GO/NO GO) (D3.2)	4/14/2019	Future Work
Cost Optimized Cell Designs	5/14/2019	Future Work
Program Conclusion	6/14/2019	Future Work

Phase 1 Status Dashboard

Task / Sub-Task	Status
1. High Energy Active Materials Selection	
1.1 Cathode Materials	
1.2 Anode Materials	
2. Increase Solids Loading	
3. Cell Architecture Development	
3.1 High-Energy-Active Electrode Forming	
3.3 Safety and Abuse Interventions	
3.4 Electrolyte Development	
4. Cost Modeling	
5. Cell Deliverables	
5.1 Benchmarking Cells	
5.2 Phase 1 Deliverables	

Key

On Schedule

Behind Schedule (<1Q); Corrective Action ID'd

Off-Schedule (>1Q); No Corrective Action ID'd

Anode development behind due to personnel resources and materials availability

Characteristics at 30°C	Units	Phase 1 Goal	Q3 (2017-03-28)
Peak Discharge Power Density, 30 s Pulse	W/L	1500	1597
Peak Specific Discharge Power, 30 s Pulse	W/kg	700	885
Peak Specific Regen Power, 10 s Pulse	W/kg	300	300
Useable Energy Density @ C/3 Discharge Rate	Wh/L	400	413
Useable Specific Energy @ C/3 Discharge Rate	Wh/kg	200	229
Useable Energy @ C/3 Discharge Rate (Test vehicle size)	Wh	21.5	2.82
Calendar Life	Years	15	0 (BOL)
DST Cycle Life	Cycles	1000	0 (BOL)
Normal Recharge Time	Hours	4	4
High Rate Charge, 15 minutes	% SOC	35%	44.6%
Maximum Operating Voltage	V	4.2	4.2
Minimum Operating Voltage	V	2.5	2.5
Peak Current, 30 s	А	400	
Maximum Self-discharge	%/month	<1%	
Survival Temperature Range, 24 Hr	°C	-20 to +55	-20 to +55
Unassisted Operating at Low Temperature @ C/3, -20C	%UE	50	15.2%
Unassisted Operating at Low Temperature @ C/3, 0C	%UE	50	61.0%
Operating Environment	°C	-20 to +55	0 to +55
Selling Cost @ 100K units	\$/kWh	250	[Protected]
Areal Capacity	mAh/cm ²		10.6
Solids Loading Level (Anode/Cathode)	Vol %		[Protected]

Goals are EOL, Gen1.6 is BOL

Task 1 – High-Energy Cathode Candidate Testing

- Several promising high energy density cathode active materials have been identified which can achieve our target energy and power requirements
 - Manufacturer's specified capacity well correlated to obtained gravimetric capacity in 24m cell format

- Continue Phase 1 development
- Deliver Phase 1 deliverable cells for testing at Argonne National Lab by June 15, 2017 (30x cell)
- Execute on high energy density initiatives to achieve Phase 2 and Phase 3 targets

Any proposed future work is subject to change based on funding levels

- 24M is demonstrating the versatility of the semi-solid electrode platform using NCM111/Graphite in Phase 1 of this USABC program
- Semi-solid cells with high areal capacity electrodes are demonstrating surprisingly high power-to-energy performance
- Cell chemistry and architecture improvements are underway to further increase energy density toward the EV 2020 targets

