HD Powertrain Optimization

Paul Chambon

Email: chambonph@ornl.gov

Phone: 865-946-1428

Oak Ridge National Laboratory
National Transportation Research Center

2017 U.S. DOE Vehicle Technologies Office Annual Merit Review

June 6, 2017 Project ID: ACS117

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

- Project start date: 10/01/2016
- Project end date: 09/30/2018
- Percent complete: 20%

Barriers*

- Cost
- Constant advances in technology
- Lack of standardized test protocols

*from 2011-2015 VTP MYPP

Budget (DOE share)

- FY17 funding: \$776,964
- FY18 funding: \$800,000

Partners

- Oak Ridge National Laboratory (Project Lead)
- Cummins, Inc.
- Eaton Corporation

Relevance

- Supports 21st Century Truck Partnership :
 - Accelerate technology development through collaborative, pre-regulatory, and precompetitive R&D component and system-level projects
 - Research one of six key technical focus areas :Drivetrain Systems technologies (
 Advanced transmission-engine controls, hybrid systems, reduced parasitic losses, and engine down-speed integration)
- Addresses the following VSST Barriers*:
 - Cost: Powertrain integration optimization requires expensive and rare powertrain testing facilities. ORNL's VSI lab is such a facility, ideally suited to demonstrate benefits of integrated powertrain in a controlled lab environment.
 - Constant advances in technology: This project researches system level approach to fuel efficiency improvement.
 - Lack of standardized test protocols: This project supports SAE J2711 standard for HD powertrain test procedures.
 - Computational models, design, and simulation methodologies: This project refines state of the art HD powertrain technology models with experimental dynamometer data to provide accuracy suitable for powertrain optimization activities.

*Reference: Vehicle Technologies Multi-Year Program Plan 2011-2015:

http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_mypp_2011-2015.pdf

Objectives

- Reduce petroleum consumption for heavy duty trucks through powertrain optimization
 - Utilize modeling, simulation, and advanced hardware-in-the-loop (HIL) experimental methodologies to develop HD powertrain and vehicle systems.
 - Optimize HD powertrain efficiency as a system by coordinating engine and transmission operations
- Establish process for system approach to powertrain optimization in horizontally integrated industry

Approach

- Establish baseline and state-of-the-art (SOA) HD powertrain efficiencies
- Develop a simulation environment for powertrain optimization
- Develop optimal supervisory control strategies designed to coordinate the engine and transmission controllers.
- Validate control algorithms offline
- Develop a prototype supervisory controller capable of implementing the previously designed control algorithms and apply them to a powertrain installed in ORNL's Vehicle System Integration (VSI) lab
- Integrate ORNL supervisory control onto the SOA powertrain in Hardware-In-the-Loop VSI lab.
- Compare SOA powertrain results with new controller powertrain.

FY2017 Milestones

Month /Year	Milestone or Go/No- Go Decision	Description	Status
Dec 2016	Milestone	Establish powertrain efficiency baseline for representative Class 8 vehicle	COMPLETE
Mar 2017	Milestone	Complete detailed powertrain and vehicle reference model for development of ORNL supervisory control strategies	COMPLETE
June 2017	Milestone	Complete baseline ORNL supervisory controller (hardware and software)	ON SCHEDULE
Sept 2017	Milestone	Procure and install advanced state-of-the-art powertrain in the ORNL VSI Lab	ON SCHEDULE

Accomplishment (1): Baseline Powertrain Benchmarking

- Selected "Un-integrated" baseline powertrain:
 - Cummins 15I 450hp MY12 ISX15 engine
 - Eaton UltraShift Plus 10-speed Automated Manual Transmission (AMT) (16E310C-LAS).
 - No co-optimization between engine controller and transmission controller.

Representative of class 8 truck long haul application

powertrains

Commissioned powertrain in VSI lab test cell

 Developed Hardware-Inthe-Loop environment for real world operation of powertrain.

Accomplishment (2): Baseline Powertrain Benchmarking

- Benchmarking matrix:
 - 4 drive cycles
 - CARB transient cycle
 - EPA GHG2 55mph cycle
 - EPA GHG2 65mph cycle
 - ORNL's real world cycle (HTDC)

- 50,000lbs
- 65,000lbs
- 80,000lbs
- Virtual test vehicle: Kenworth T700
 - Axle ratio: 3.36:1;
 - Rolling resistance: 0.00584

Aero drag: 6.86

Accomplishment (3): Baseline Powertrain Benchmarking

- 55mph cruise cycle gets the best fuel economy because of:
 - Lower vehicle speed and lower drag losses
 - Engine operation closer to peak efficiency and lower speed.
- 65mph cruise cycle and HTDC cycle get comparable higher fuel consumption due to:
 - Higher vehicle speed and losses
 - Engine operation farther from peak efficiency and higher speed.
- Opportunity for down-speeding

Accomplishment (4): Modelling Environment Setup

- Generated heavy duty truck model with Autonomie
- Parametrized vehicle model for same Kenworth T700 vehicle used in HIL benchmarking

Accomplishment (5): Modelling Environment Setup

 Parameterized transmission model and shift strategies with experimental data logged during the benchmark phase.

Collaboration and Coordination

- · Cummins, Inc.
 - Supply of X15 engine, after-treatment and controller
 - Technical support to:
 - Commission engine in test cell
 - Optimize/calibrate engine controls for specific transmission

Eaton Corporation

- Supply of SmartAdvantage transmission
- Technical support to:
 - Commission transmission in test cell
 - Optimize/calibrate transmission controls for specific engine

Remaining Challenges and Barriers

- Some optimization will require calibration (or maybe even code) changes inside the production controllers. This can only be performed by original equipment manufacturers (OEMs).
 - Because of the working relationship with Eaton and Cummins and their expressed interest in this project, such support is expected to be available such that it won't affect the project.

Proposed Future Work

- Complete baseline ORNL supervisory controller (hardware and software) (Q3 FY17)
- Procure, commission and characterize State Of the Art integrated powertrain (Cummins-Eaton SmartAdvantage) (Q4 FY17)
- Complete benchmark of State Of the Art powertrain (Q1 FY18)
- Integrate and verify ORNL supervisory control into the SOA powertrain (Q2 FY18)
- Complete testing with SOA and ORNL supervisory controller (Q3 FY18)
- Complete Final Report (Q4 FY18)

Summary

Relevance:

Reduce petroleum consumption for heavy duty trucks through powertrain optimization

Approach:

 Optimize HD powertrains as a system to improve component integration and efficiency, and overcome industry horizontal integration

Collaborations:

- ORNL, Cummins, Eaton
- Technical Accomplishments:
 - MY12 Class8 Truck Powertrain benchmark completed
 - Simulation environment and model validation completed
 - Procured SAO integrated powertrain

• Future Work:

- Develop supervisory powertrain controls
- Benchmark SOA integrated powertrain
- Demonstrate supervisory powertrain controls on SAO powertrain in VSI lab
- Publish system level optimization process for potential commercialization