Development and Optimization of a Multi-Functional SCR-DPF Aftertreatment System for Heavy-Duty NO$_X$ and Soot Emission Reduction

Kenneth Rappé, Yong Wang, Feng Gao, Janos Szanyi, Chaitanya Sampara
Pacific Northwest National Laboratory

DOE Annual Merit Review
June 7, 2017

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Timeline
- **4-yr CRADA**
 - Start date – July 2016
 - End date – June 2020
- **16.7% complete**

Barriers
- **B. Lack of cost-effective emission control** for meeting EPA standards for NOx & PM
- **E. Durability** of the emission control system: 435,000 miles
- **G. Cost** of emission control devices … for heavy truck engines in particular

Budget
- **Contract value** – $2.7M
 - $1.35M DOE Share
 - $1.35M PACCAR Share
- **Funding received**
 - FY16 – $200K
 - FY17 – $355K

Partners
- **CRADA partner** – PACCAR Inc
- **PACCAR Inc** – multiple contracts in place in support of advanced aftertreatment development and engineering
RELEVANCE
Multi-Functional Aftertreatment

Current 2017 HD Aftertreatment

Future Advanced Aftertreatment

Key:
Enabling passive soot oxidation

SCR-on-DPF

- Soot trapped upstream
- Molecular diffusion to washcoat
Highly promising strategy for after-treatment integration
- Reduced thermal mass & faster warm-up – reduced cold start emissions
- Improved aftertreatment performance & increased flexibility

LIGHT DUTY – challenges
1. **Sufficient SCR performance**
 - Ultra-high porosity filter development (Corning, NGK)
 Enables more SCR catalyst at acceptable engine back pressure
 - Advanced filter coating, imaging techniques (e.g., PNNL micro-Xray-CT)
 Optimized catalyst placement and usage in the filter wall

2. **SCR catalyst durability**
 - ... to withstand **active** soot oxidation management
 Cu/SSZ-13 – more thermally durable, a key enabler

Currently being deployed for **light-duty** application

http://www.catalysts.basf.com/p02/USWeb-Internet/en_GB/content/microsites/catalysts/prods-inds/mobile-emissions/scr-filter
http://papers.sae.org/2016-01-0915/
HEAVY DUTY – challenges

1. Sufficient SCR performance
2. SCR catalyst durability
3. Passive soot oxidation performance (via NO₂)
 - Economically attractive to manage soot passively for heavy duty
 - With incorporation of SCR phase, competition for NO₂

SOLUTION

- Modify the SCR catalyst to generate NO₂ in situ

RELEVANCE

SCR-on-DPF

fast-SCR: \[2\text{NH}_3 + \text{NO} + \text{NO}_2 \rightarrow 2\text{N}_2 + 3\text{H}_2\text{O}\]

versus

passive soot oxidation: \[\text{C (soot)} + 2\text{NO}_2 \rightarrow \text{CO}_2 + 2\text{NO}\]

Dominates NO₂ consumption

Significantly compromises soot oxidation
FOCUS OF WORK

- Development of a novel SCR active phase for the SCRF system that exhibits sufficient passive soot oxidation and NO\textsubscript{X} reduction efficiency at acceptable ΔP to be attractive for HD diesel application.

How?

- An SCO-SCR binary catalyst system – incorporation of a selective catalyst oxidation (SCO) metal oxide phase with the SCR catalyst.
- The binary catalyst will yield greater availability of NO\textsubscript{2} in the system without sacrificing necessary NO\textsubscript{X} reduction performance or durability.

PNNL and PACCAR are pursuing …

- Advancement of the SCO-SCR binary catalyst that is achievable in the time frame proposed.
- … to make its integration with DPF a viable candidate for combined NO\textsubscript{X} and PM aftertreatment for heavy-duty.
APPROACH

Timeline

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Months</td>
<td>24 Months</td>
<td>36 Months</td>
<td>48 Months</td>
</tr>
<tr>
<td>Feasibility/approach</td>
<td>SCO-SCR development</td>
<td>2-liter scalability</td>
<td>Full-scale scalability</td>
</tr>
<tr>
<td>SCO identification</td>
<td>SCRF optimization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEVELOPMENT of SCO-SCR BINARY CATALYST
- Sample screening
 - SCO phase screening
- SCO-SCR binary catalyst fundamental and aging studies
- SCO-SCR binary catalyst optimization

CATALYST INTEGRATION w/DPF
- Coating procedure
 - Catalyst loading/distribution
 - Substrate/porosity

SCR-on-DPF MODEL DEVELOPMENT
- Model platform development
 - Reaction matrix, parameter optimization, modeling aging behavior
 - Device-level model development

2-L SCR-on-DPF SCALING/TESTING

FULL-SCALE SCR-on-DPF
APPROACH

Milestones

<table>
<thead>
<tr>
<th>Date*</th>
<th>Milestone and Go/No-Go Decisions</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2016</td>
<td>Milestone: 1<sup>st</sup> group of PACCAR SCO/SCR binary-phase catalyst samples delivered to PNNL for testing</td>
<td>Complete</td>
</tr>
<tr>
<td>February 2017</td>
<td>Milestone: Large-batch Cu/SSZ-13 SCR phase prepared and ready for SCO phase development</td>
<td>In-progress</td>
</tr>
<tr>
<td>May 2017</td>
<td>Milestone: Structure of integrated SCR-DPF single-wall model complete</td>
<td>In-progress</td>
</tr>
<tr>
<td>August 2017</td>
<td>Milestone: 1<sup>st</sup> group of SCO/SCR binary-phase catalysts with candidate SCO phases (preferably <3) ready for fundamental study</td>
<td>On-track</td>
</tr>
<tr>
<td>November 2017</td>
<td>Milestone: 1<sup>st</sup> group of optimized SCRF samples with candidate SCO/SCR binary catalyst ready for detailed testing</td>
<td>On-track</td>
</tr>
<tr>
<td>February 2018</td>
<td>Go/No-Go decision: Identify candidate SCO/SCR binary phase catalyst with improved soot oxidation performance with competing SCR</td>
<td>On-track</td>
</tr>
</tbody>
</table>

* As of 04/10/2017
Selective parameter screening with ZSM-5 model system

- Focused on ZrO$_2$–based SCO phase, to evaluate the effect of …
 - SCO phase on Cu/ZSM-5 performance
 - Binary catalyst mass ratio (SCO to SCR)
 - Binary catalyst loading
 - Varying catalyst preparation procedures (i.e., different ‘lots’)
 - Catalyst loading symmetry
 - ZrO$_2$ source

- PACCAR
 - Sample acquisition/preparation

- PNNL
 - Performance & durability assessment

- Detailed interrogation of SCR and contributing reaction performance
 - Multi-step protocol testing

- Soot loading & passive soot oxidation study
TECHNICAL ACCOMPLISHMENTS
Impact of SCO-phase on NO₂ balance

Fast SCR NO₂ Balance

NO₂ balance
- total ppm
- NO₂/NOₓ
... IS impacted by SCO-phase contribution
TECHNICAL ACCOMPLISHMENTS
Impact of SCO phase on NRE

Variables involved in this data set include …
- SCO-phase chemistry
- Catalyst ratio
- Catalyst loading
- Cu loading
- SCO-phase particle size

No SCO phase
- 0.1-µm colloidal ZrO₂
- 1-µm ZrO₂ (600°C decomp.)
- 1-µm ZrO₂ surface modified w/ Nb₂O₅

We ARE seeing the expected impact of increased NO oxidation on SCR performance (standard & fast)

SCR reaction rate

\[\frac{\text{NO}_2/\text{NO}_X}{0} \]
TECHNICAL ACCOMPLISHMENTS

SCO/SCR system optimization

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cu (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22B</td>
<td>0.84</td>
</tr>
<tr>
<td>24</td>
<td>0.30</td>
</tr>
<tr>
<td>25</td>
<td>0.19</td>
</tr>
<tr>
<td>28</td>
<td>0.23</td>
</tr>
<tr>
<td>29</td>
<td>0.21</td>
</tr>
</tbody>
</table>

- NO oxidation also governed by SCR catalyst (e.g., Cu exchange level)
- Thus, optimization **WILL** necessarily consider both SCO and SCR phases

Effect of Different Catalyst Preparation Lots

![Graph showing the effect of different catalyst preparation lots on NO oxidation and NH\textsubscript{3} Oxidation (by O\textsubscript{2})](image)

- Catalyst Inlet Temperature [°C]
- NO Oxidation
- NH\textsubscript{3} Oxidation (by O\textsubscript{2})

- Catalyst Preparation Lots:
 - 22B (66g/L)
 - 24 (64g/L)
 - 25 (67g/L)
 - 28 (65g/L)
 - 29 (67g/L)
TECHNICAL ACCOMPLISHMENTS
Multi-functional device engineering

- Symmetrical versus asymmetrical catalyst loading

![Graph showing NOx Reduction Efficiency vs Catalyst Inlet Temperature]

For multi-functional devices, device engineering (led by PACCAR) is a critical component to success.

- Improved activity with superior dispersion
- ... at lower pressure drop.

Clean ΔP @ GHSV ~35,000

Without soot

Clean

22A
22B
22C

Pressure Drop [kPa]

Temperature [°C]
TECHNICAL ACCOMPLISHMENTS
Impact(s) of soot/catalyst on each other

Soot ↔ SCR

SCR catalyst mainly impacts depth filtration of soot

Primary impact of soot on SCR function is on NO\textsubscript{x} make-up

Elucidating prior work
TECHNICAL ACCOMPLISHMENTS

SCO phase impacting soot oxidation

Passive soot oxidation (PSO)

<table>
<thead>
<tr>
<th>PSO metric</th>
<th>SCR</th>
<th>SCR + SCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>20ppm CO₂ production</td>
<td>395°C</td>
<td>365°C</td>
</tr>
<tr>
<td>Balance Point Temperature</td>
<td>515°C</td>
<td>490°C</td>
</tr>
</tbody>
</table>

SCO phase **IS** impacting passive soot oxidation light-off
First year of program, no comments to address.
Collaboration & Coordination

Pacific Northwest
NATIONAL LABORATORY

- Fundamental catalysis discovery
- Active site characterization & optimization
- Performance & durability
- Modeling

PACCAR Inc

- SCO phase discovery
- SCRF washcoat development
- SCR phase development
- DPF optimization

DPF Substrate Suppliers
- Cordierite
- SiC

SCR Catalyst Development
- Mesoporous Cu/SSZ-13

Catalyst Suppliers

Prototype Cannners
FY17/18

Identification of optimum SCO metal oxide phase, that when integrated with the SCR phase (Cu/SSZ-13), ...

- ... enables passive soot oxidation capacity for HD diesel ...
 - Identification of optimum SCO-phase metal oxide chemistry (e.g., ZrO₂, Zr-based solid solutions) to generate NO₂ at the SCR catalyst surface
 - Methods of efficiently screening SCO candidates (i.e., catalyst discovery) that accurately predict/determine passive soot oxidation impact

- ... while exhibiting necessary SCR performance.
 - Identification of SCO-phase metal-oxide chemistry that balances activity for NO₂-make with subsequent effect on (i) SCR durability, and (ii) parasitic NH₃ oxidation at elevated temperature
 - Optimizing method of integration of the SCO-phase with the SCR catalyst that achieves the necessary activity (NO₂) and durability (SCR)
 - Understanding the impact of the SCO-phase on performance & aging-behavior of active Cu-centers
Future Work

FY17/18 Any proposed future work is subject to change based on funding levels

- Complete ZSM-5 model system study for metal oxide screening
 - Needs to be quick!
 - High-level screening for candidate identification

- Clearly show feasibility on Cu/SSZ-13
 - Surface nitrate formation (transmission IR, TPD)
 - SCR reaction performance

- Directly correlate to soot oxidation impact, and use correlation to guide SCO-phase evolution
 - Iterate surface science and active-phase (i.e., powder) study to core for evaluating passive soot oxidation impact

- Develop strategy for understanding SCO-phase impact on SCR behavior & durability
 - Active Cu centers (TPR, EPR), understanding impact of aging and Cu transition: Cu(OH)$^{1+}$ to Cu$^{2+}$ to Cu$_x$O$_y$
 - SSZ-13: NMR
SUMMARY

Aftertreatment **effectiveness, durability, cost**

SCO-SCR binary catalyst development

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cu (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22B</td>
<td>0.84</td>
</tr>
<tr>
<td>24</td>
<td>0.30</td>
</tr>
<tr>
<td>25</td>
<td>0.19</td>
</tr>
<tr>
<td>28</td>
<td>0.23</td>
</tr>
<tr>
<td>29</td>
<td>0.21</td>
</tr>
</tbody>
</table>

PSO metric

<table>
<thead>
<tr>
<th>PSO metric</th>
<th>SCR</th>
<th>SCR + SCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>20ppm CO₂ production</td>
<td>395°C</td>
<td>365°C</td>
</tr>
<tr>
<td>Balance Point Temp.</td>
<td>515°C</td>
<td>490°C</td>
</tr>
</tbody>
</table>

Catalyst Inlet Temperature [°C]

- Fast SCR
- Std SCR
- No SCO phase
 - 0.1-µm colloidal ZrO₂
 - 1-µm ZrO₂ (600°C decom.)
 - 1-µm ZrO₂ surface modified w/ Nb₂O₅

NOₓ/NOₓ Out [200°C]

- SCR
- SCO1
- SCO2
- SCO3
- SCO4

NO Reduction Efficiency

- SCR
- Fast SCR
- Std SCR

22A asymmetrical

22B

22C symmetrical

Soot SCR
Technical Back-Up Slides
The SCRF washcoat

SCRF – findings from prior CRADA

Flow

Cu/Z slurry

Graphs

- **Pressure Drop, kPa**
- **Accumulated Soot, g/L**

Upstream

- 90 g/L SCR catalyst
 - ∆P after initial loading phase: ~11.5 kPa @ ~0.5 g/L soot

Downstream

- 150 g/L SCR catalyst
 - ∆P after initial loading phase: ~20.5 kPa @ ~0.52 g/L soot

Incremental Pore Volume (mL/g)

Pore Diameter (μm)

- ~150 g/L Catalyst: ~54% porosity
- ~90 g/L Catalyst: ~53% porosity
- ~60 g/L Catalyst: ~60% porosity
- No Catalyst: ~68% porosity
Technical Back-Up Slides
SCR reaction network (simplified)

4NH₃ + 3O₂ → 2N₂ + 6H₂O
4NH₃ + 5O₂ → 4NO + 6H₂O
NO + ½ O₂ ⇌ NO₂

2NH₃ + 2NO + ½O₂ → 2N₂ + 3H₂O
2NH₃ + 2NO + 2NO₂ → 2N₂ + 3H₂O
8NH₃ + 6NO₂ → 7N₂ + 12H₂O

2NO₂ + 2NH₃ → N₂ + H₂O + NH₄NO₃
NH₄NO₃ ⇌ NH₃ + HNO₃
2NO₂ + H₂O ⇌ HONO + HNO₃

NH₃ + HNO₃ → N₂O + 2H₂O

► Standard SCR reaction (NO₂/NOₓ = 0)
► Fast SCR reaction (NO₂/NOₓ = 0.5)
► NO₂-only SCR reaction (NO₂/NOₓ = 1)
10% O$_2$, 8% CO$_2$, 7% H$_2$O, 300 ppm NO$_x$, 300 ppm NH$_3$

Pre-treatment – 60 minutes @ 600°C

Protocol executed at 500°C, 450°C, 275°C, 200°C

8 Step SCR Protocol

<table>
<thead>
<tr>
<th>Step</th>
<th>NO</th>
<th>NO$_2$</th>
<th>NH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>
Steps 1 & 5
- NO oxidation (to NO₂)
- NOₓ storage

Steps 2 & 6
- SCR performance
- NH₃ slip
- Parasitic NH₃ oxidation
- N₂O selectivity
- NO₂/NOₓ in effluent
- NH₃ SCR storage

Steps 3 & 7
- NH₃ oxidation (by O₂)
- Vacant NH₃ storage

Steps 4 & 8
- Total NH₃ storage
Technical Back-Up Slides

Example tabular data

<table>
<thead>
<tr>
<th>Step</th>
<th>SS</th>
<th>D</th>
<th>SCR reaction</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Step 1</td>
<td>SS</td>
<td>D</td>
<td>NO oxidation</td>
<td>4.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO\textsubscript{X} storage</td>
<td>19.5</td>
</tr>
<tr>
<td>Step 2</td>
<td>SS</td>
<td>D</td>
<td>NO\textsubscript{X} conversion</td>
<td>85.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NH\textsubscript{3} slip</td>
<td>10.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parasitic NH\textsubscript{3} oxidation</td>
<td>4.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N\textsubscript{2}O selectivity</td>
<td>0.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO\textsubscript{2}/NO\textsubscript{X} effluent</td>
<td>2.2%</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>D</td>
<td>NH\textsubscript{3} storage (SCR)</td>
<td>74.6</td>
</tr>
<tr>
<td>Step 3</td>
<td>SS</td>
<td>D</td>
<td>NH\textsubscript{3} oxidation (by O\textsubscript{2})</td>
<td>18.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NH\textsubscript{3} storage (vacant)</td>
<td>161.9</td>
</tr>
<tr>
<td>Step 4</td>
<td>D</td>
<td></td>
<td>NH\textsubscript{3} storage (total)</td>
<td>213.7</td>
</tr>
<tr>
<td>Step 5</td>
<td>SS</td>
<td>D</td>
<td>NO\textsubscript{X} oxidation</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO\textsubscript{X} storage</td>
<td>25.3</td>
</tr>
<tr>
<td>Step 6</td>
<td>SS</td>
<td>D</td>
<td>NO\textsubscript{X} conversion</td>
<td>97.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NH\textsubscript{3} slip</td>
<td>1.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parasitic NH\textsubscript{3} oxidation</td>
<td>0.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N\textsubscript{2}O selectivity</td>
<td>0.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO\textsubscript{2}/NO\textsubscript{X} effluent</td>
<td>13.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NH\textsubscript{3} storage (SCR)</td>
<td>12.1</td>
</tr>
<tr>
<td>Step 7</td>
<td>SS</td>
<td>D</td>
<td>NH\textsubscript{3} oxidation (by O\textsubscript{2})</td>
<td>17.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NH\textsubscript{3} storage (vacant)</td>
<td>186.0</td>
</tr>
<tr>
<td>Step 8</td>
<td>D</td>
<td></td>
<td>NH\textsubscript{3} storage (total)</td>
<td>193.8</td>
</tr>
</tbody>
</table>

What are we looking for?

- **SCR activity**
 - SCR activity **SHOULD** provide good indication if we are producing NO\textsubscript{2} insitu
 - Standard (NO only) SCR reaction conditions should yield superior results (with inclusion of fast SCR reaction)
 - Fast (equimolar NO, NO\textsubscript{2}) SCR reaction conditions should yield inferior results (with inclusion of NO\textsubscript{2}-only SCR reaction)