DAIKIN AMERICA, INC.

Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

Joe Sunstrom, Abundio Sandoval, Michael Gilmore, Ron Hendershot

Daikin Technical Center, Decatur, Alabama

June 8, 2017
Project ID: ES312

This presentation does not include proprietary, confidential or otherwise restricted information

Timeline

• Start Date: 10/1/16

• End Date: 9/30/19

• 17% Complete

Target and Barriers

- Performance 300-1000
 cycles at 4.6 V
- Failure mechanisms at high voltage

Budget

- Total \$1,826,895
 - DOE \$1,250,000
 - Daikin America \$576,895
- Expenditure of Gov't Funding
 - **−** FY2017 ~ 152K (estimate)

Partners

- Interactions/Collaborations
 - None (2017)

Technical Approach

Effect of fluorochemicals additives on the electrolyte/electrode interaction

Task Number (Q)	Task or Subtask Title	Milestone Type (Milestone or Go/No Go Decision Point)	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process (What, How, Who, Where)
1.1	Establish baseline and review current state of art	Milestone	Establish current physical and performance baselines for fluorinated electrolyte	Report profile performance of current best electrolyte in baseline cells
1.2	Gas composition	Milestone	Gas composition as function of voltage and cathode surface	Understand changes in gas composition with changing chemistry and conditions
1.3	Gassing kinetics of FEC	Milestone	Gassing dynamics of FEC	Study pathway and kinetics of FEC decomposition
1.4	Gas kinetics based on cathode surface composition	Go/No Go	Gassing as function of metal ratio in cathode	Determine if gassing can be minimized through electrolyte composition

Project Objective: to develop a stable (300 – 1000 cycles), high-voltage (up to 5 volts), and safe (self-extinguishing) formulated electrolyte.

Performance Objective

- Propose electrolyte solvent systems through DOE methods for high voltage battery systems.
- Optimize additive packages for increased cycle life
- Understand mechanisms for cell failure via electrolyte

• Safety Objective

- Integrate safe solvent combinations into optimized electrolyte formulation
- Develop safety testing methods for evaluation of candidate electrolytes.

Technical Strategy

Technical Strategy

Purpose: To find key failure elements to propose solutions e.g. diluents, surface protection.....

Increase in capability

Current bottleneck – sample preparation Expansion from 20 → 102 channels

Daikin baseline cells

Verification of reproducible results

1 A-hr pouch cell

 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC111) cathode

Graphite anode

Cells are anode limited and balanced for 4.2 V

200 mA-hr pouch cell

 $\begin{array}{l} LiCoO_{2} \ (LCO) \ cathode \\ LiNi_{0.33}Mn_{0.33}Co_{0.33}O_{2} \ \ (NMC111) \ cathode \\ LiNi_{0.5}Mn_{0.3}Co_{0.2}O_{2} \ (NMC532) \ cathode \\ LiNi_{0.6}Mn_{0.2}Co_{0.2}O_{2} \ (NMC622) \ cathode \\ LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2} \ (NCA) \ cathode \\ \end{array}$

Graphite anode

Cells are anode limited and balanced for 4.4 V

Establish baselines - voltage

Establish baselines - voltage

Discontinuities in the energy vs voltage plots at 4.4 V (gassing) and 4.6 V (?)

Fluorocarbon Electrolyte Performance(0.2C)

Hydrocarbon Electrolyte Performance(0.2C)

Fluorocarbon Electrolyte Performance(1.0C)

Hydrocarbon Electrolyte Performance(1.0C)

Establish baselines - voltage

Cycle data from Argonne confirms fluorocarbon performance decrease between 4.5 and 4.6 V

Static gassing LCO over time

Using cut and weighed pieces of electrode removed from charged cells – chemical interaction

Static cathode gassing

Majority of gas generation is at cathode. Higher gassing for LCO is consistent with the hypothesis.

Note: Scale 0-1400%

Gas generation is minimal at most anodes. NMC111 cell anodes are from different cell manufacturer (different graphite anode)

Note: Scale 0-120%

Baseline GC/MS analyses

Fluoroether

Ethyl Methyl Carbonate (EMC)

Fluoroethylene Carbonate (FEC)

DAIKIN

Technical Summary

- Expansion of lab facilities expected to be complete by June 2017
- Baselines have been established for:
 - Electrolyte composition
 - Nickel content of cathode
 - Operating voltages
 - Cycle time
 - Cycle current
 - Temperature
- Static measurements have been made on several cathodes with varying nickel content. Charged LCO cathode shows the largest degree of electrolyte decomposition
- Charged anode for NMC111 cell shows gassing anomaly. The measurement needs to be reproduced
- GC/MS measurements have been made on candidate electroytes.

DAIKIN

Future Work/Critical Assumptions

- Determination of gas composition and kinetics as function of voltage and nickel content will be completed through the end of FY 2017
 - A study of gassing kinetics as a function of FEC content in the electrolyte to be completed
- Beginning in 2018, detailed study of electrode films will be undertaken from samples made for gassing study.

Critical Assumptions

Lab capability needs to proceed on schedule for sample production

New Project