

2017 Annual Merit Review

Cummins/Peterbilt SuperTruck II

Michael Ruth – Principle Investigator, Cummins Inc.

Ken Damon – Peterbilt Motors Company

8 June 2017

Project ID:ACS102

This presentation does not contain any proprietary, confidential, or otherwise restricted information

<u>Timeline</u>

Begin: 10/1/2016

End: 9/30/2021

~10% complete (4/15/2017) Engine Efficiency \geq 55% BTE Freight Efficiency \geq 100% FTE

Barriers

Cost effective solutions

<u>Budget</u>

Total Project: \$40M \$20M DoE - \$20M Cummins Total Spent: \$920K \$451K = Cummins \$451K = DoE

Partners

Cummins – Powertrain Eaton - Transmission Peterbilt - Vehicle Bridgestone – Tires Walmart – Customer counsel

Objectives

- Demonstrate a <u>minimum</u> of 55% BTE at a 65 mph cruise, on an engine dynamometer test stand
 - Same engine systems also demonstrated in vehicle, operating on real world drive cycles
- Achieve a <u>minimum</u> of 125% Freight Ton Efficiency (FTE).
 - FTE = MPG*Tons of Freight
- Track, promote and report on cost effective solutions
 - Prioritize solutions that have ~3 year payback period
 - Utilize customer counsel for understanding payback variables

Relevance

4

- Approximately 20% of U.S. transportation petroleum goes to the production of heavy truck fuel. Proposed improvements would save more than 400 million barrels of oil per year.*
 - Reduce imports and improve energy security
 - Reduce the cost of moving goods
- Heavy Truck GHG emissions account for a CO2 equivalent 420.7 MMT per year (35th edition of the Transportation Energy Data Book).
 - Improved air quality
 - Protect the public health and environment

* https://energy.gov/eere/vehicles/vehicle-technologies-office-moving-america-forwardenergy-efficient-vehicles

Milestones by Quarter

FY 2017	Description	
Subcontracts completed	Subcontracts with all contributing partners completed	
ACEM* Definition	I/O and supervisor structure defined	
Customer route DNA completed	Customer route analysis via NREL tools, routes identified for program	
Outer body shape definition	Design direction to meet aerodynamic goals	

*ACEM – Advanced Cycle Efficiency Manager

Milestones by Quarter

FY 2018	Description	
Tire samples built	Lab testing on A-samples completed	
Weight budget confirmed	Chassis, cab/sleeper, trailer targets established	
Base engine at 50% BTE	Mule vehicle powertrain supports 50% BTE	
Cooling system	cooling system direction; indirect cooling for WHR performance vs. aero improvement	

All proposed future work is subject to change based on funding levels

Cummins Powertrain

Technical Approach – SuperTruck II Target –

Energy recovery, Vehicle Aero, Tires, Transmission, Axle

Technical Approach – ST1 to 55% BTE –

Subsystem	55% BTE (Additional or Replace)	Expected Benefit
Combustion System	Higher CR, Insulated Surfaces, No/Low Piston Cooling, Higher Temp Coolant	+1.3% BTE
Fuel System	High Flow Injectors (3x faster injection)	+1.3% BTE
Air Handling System	Dual Loop EGR & Larger Turbocharger, Consider Twin Entry WG	+0.6% BTE
WHR System	HP EGR, LP EGR, Exhaust, Coolant, Lube, Charge Air Cooler	+0.2% BTE
Aftertreatment System	DOC+SCRF Close-Coupled + SCR	NOx Control
Mechanical System	Low Tension DLC Coated Rings, Plasma Coated Liners, No/Low Piston Cooling, Variable Flow Pumps, Reduce Valve train Parasitic loads	+0.6% BTE 10

Technical Approach Base Engine System –

13L class packaging space ~150 kg lighter than ST1 base engine High efficiency enabling technologies High cylinder pressure capability Low dP ports and manifolds Low parasitic lube & cooling systems State-of-the-art power cylinder design Enable high technology content integration Powertrain mounted aftertreatment system Waste Heat Recovery system integration Clutched air compressor Feedback and control circuits for variable flow pump systems

Technical Approach – Axle and Transmission –

- Efficiency improvements
 - Lube oil viscosity, reduced churn
 - Gear finish
 - Bearing systems
- Weight reductions
 - Extensive use of aluminium

 $\mathsf{SmartTandem}_{\$}$ is a registered trademark of Meritor Corporation

Technical Approach - Energy Recovery Strategy -

eterbilt

- Mild Hybrid Technology
- Decouple engine (EOC) on gentle down grades
- Use with engine brake on steep down grades
- Use with service brake in slow / city traffic
- Shave power on gentle inclines or flat roads
- Supplement power on accelerations, in traffic and on inclines

- A generic Energy Recovery system analyzed using constant Motor-Generator and Battery Efficiencies
- Motor size > 30 kW and Battery Size above 3-4 kWhr gives diminishing returns for demonstration route

Liner/Ring Friction Testing Completed -

Accomplishments

New Engine Platform Design Completed -

Engine design and analysis completed, procurement work is beginning;

- Weight targets confirmed
- Base engine package size achieved
- Powertrain layout (engine + trans, all A/T, WHR and Energy recovery system are mounted on module)

Accomplishments

- Route/Vehicle Model Completed -
- Routes Mapping
 - Walmart routes used for financial analysis
 - NREL logging and analysis 100K+ miles, 3 locations, 56 total vehicles
- Purdue University + Autonomie
 - Base model nearing completion (April '17)
 - Route data work to be used for validation
 - Shared with partners for technology assessment and development

Ken Damon

Peterbilt Motors

Technical Approach – Enabling Technologies –

- Efficient Powertrain
- Aerodynamics
- Parasitic Reduction
- Lightweighting
- Driver Assist

Technical Approach – Aerodynamics –

- Advanced Vehicle Shape
- Trailer Gap Treatment
- Yaw Mitigation Techniques
- Advanced Speed Control

Reduced Vehicle X-Section

Technical Progress – Aerodynamics –

cummins

- Goal: 15% Drag Reduction vs. ST1
 0° and 6° Yaw Boundaries (GHG)
- Two-Phase Analysis Path
 - Evolutionary Build Upon ST1
 - Clean Sheet Ground Up
 - Peak Achievement: ~27%
 - ~10% Historic Loss in Execution
- Drag Summary: Target Achievable

ST1 Evolutionary Path

Technical Progress – Aerodynamics –

- High Yaw Design
 - Beyond GHG Limits
 - Experienced in Real World

- Yaw Mitigation Strategies
 - Flatten Drag Polar
 - Reverse Upward Trend

Technical Approach – Parasitic Loss –

- Significant Technical Opportunity
- Improve Rolling Resistance (Crr)
- Review Contact Patch
- Reduce Tire Diameter

Technical Approach – Parasitic Loss –

- Partnership with Bridgestone
- Three Tire Positions
- 30% Rolling Resistance Reduction (~6% Fuel Economy)
- Dual Path Development
 - Low Crr in Conventional Diameter (295/75R22.5)
 - Low Crr in Reduced Diameter

Dual Path Development

Technical Progress – Parasitic Loss –

- Identified Technical Approach for Mule and Demo Samples
- Developed Tire Specifications for Mule Truck Tires
- Created Finite Element Analysis Models for Tread Compound/Tire Construction
- Initiated FEA of 5 New Low Profile Sizes
- Initiated Lab Studies on New Mix Technologies
- Created Prototype Mold Tooling to Evaluate New Sipe Technology

Technical Progress – Chassis Concepts –

500lb Weight Reduction Target

Technical Approach – Trailer Development –

- SuperTruck I
 - 48% Vehicle Drag Reduction
 - 66% of Vehicle Drag Reduction
 Due to Trailer Technology
- SuperTruck II
 - Integrated Trailer Solutions
 - Aerodynamics
 - Dynamic Enablers
 - 500lb Weight Reduction
 - Designs Vetted w/ Customer Counsel

Technical Approach

- Route and Technology Selection —
- Walmart Route Analysis: NREL
- Current/Future Shipping Practices
 - Long Haul
 - Slip Seat
 - Regional
- Legislation Changes
 - Cameras
 - Length Laws
 - Combination Vehicles
- Technology to Match Mission

Commercial Focus

- Develop
 - Focused Team Vets Technology
 - Integrate into Demonstration Vehicle
 - Feed Product Development Pipeline
- Harvest
 - Deploy Features/Options
 - Robust/Competitive Product Profile
- Deliver
 - Regulatory Compliant Products
 - High Value for the Market

Summary

- Cummins and Peterbilt Technologies shall Deliver
 - 55% Brake Thermal Efficiency
 - 125% Freight Efficiency
 - Weight Reduction
 - Aerodynamic Improvements
 - Tire Rolling Resistance Reduction
 - Engine and Cycle Efficiency Improvements
- Maximize the Production Potential through
 - Smart Design
 - Financial Analysis
 - Customer Input

Thank You!