

A Closed Loop Process for the Endof-Life Electric Vehicle Lithium-Ion Batteries

Yan Wang (P.I.), Zhangfeng Zheng, Mengyuan Chen

Organization: Worcester Polytechnic Institute

2017 DOE Annual Merit Review

Date: June 5~9, 2017

Project ID #: ES293

Overview

Timeline

- Project start date: Feb 2, 2016
- Project end date: Jan 15, 2018
- Percent complete: 60%

Budget

- Total project funding: \$1,024,740
 - DOE share: \$512,370
 - Contractor share: \$512,370
- Funding received in FY 2016: \$239,655
- Funding for FY 2017: \$512,370

Barriers

- Barriers addressed
 - Cost
 - Performance

Partners

- Interactions/ collaborations:
 A123 Systems, Battery
 Resourcers, Argonne National
 Laboratory, General Motors, Ford, FCA, SNT
- Project lead: WPI

Relevance and Project Objectives

- Recycle multiple 10 kg size batches of end of life EV batteries consisting of different incoming cathode chemistries
- Produce cells of a single chemistry that could be used in a PHEV battery, to be tested according to USABC's PHEV test methods
- Improve the performance of the recovered cathode materials so that they exhibit performance on level with current commercial materials
- Recycle other materials including steel, copper, aluminum, etc.

Milestones

	Timeline (months)- 2 Year Duration							
Milestones	Q1, Yr1	Q2, Yr1	Q3, Yr1	Q4, Yr1	Q1, Yr2	Q2, Yr2	Q3, Yr2	Q4, Yr2
1:Improve electrochemical performance using 1 kg batches								
1.1 Optimize NMC111 synthesis parameters								
1.2 Improve lithium and cathode material recovery rate								
1.3 Electrodes Development								
2: Scale Process to 10 kg batch size								
2.1 Verify the state of health of spent batteries								
2.2 Scale process to 3 kg batch size								
2.3 Determine failure mechanism of cells from 3 kg batc	h							
2.4 Scale process to 10 kg batch size								
3:Produce 200 2Ah cells from recycled materials								
4: Fabricate 25Ah cells from recycled materials								
Final Report								

Cell Fabrication and Test Plan

Initial Scale-Up from 1kg – 3 kg batch (100 coin, 15 2 Ah cells)

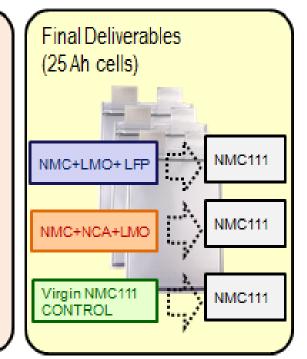
Process Optimization Metrics:

- Capacity (FCC, ICL)
- DCR impedance
- Rate capability
- Self discharge
- Cycle life trend
 Recovery efficiency

Scale-Up and Optimization Phase (235 x 2 Ah cells) 10 kg batch sizes

NMC+LMO +LFP

NMC+NCA+LMO


NMC+NCA+LMO

(+ LFP

TBD)*

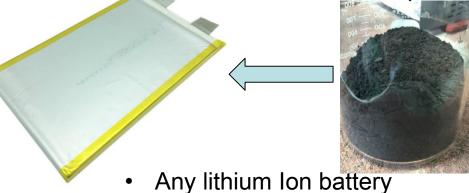
Virgin NMC111 CONTROL

 WG will use 3 kg and 10 kg scale-up results to determine best composition for 4th group

Test Article	Total Made	Groups	USABC/ ANL	A123/ WPI	Comments
2 Ah NMC111/ gr cells	250	5	(5x10) 50 total	200	Majority of testing by A123/WPI to inform optimization
25 Ah NMC111/ gr cells	60	3	(3x10) 30 total	30	

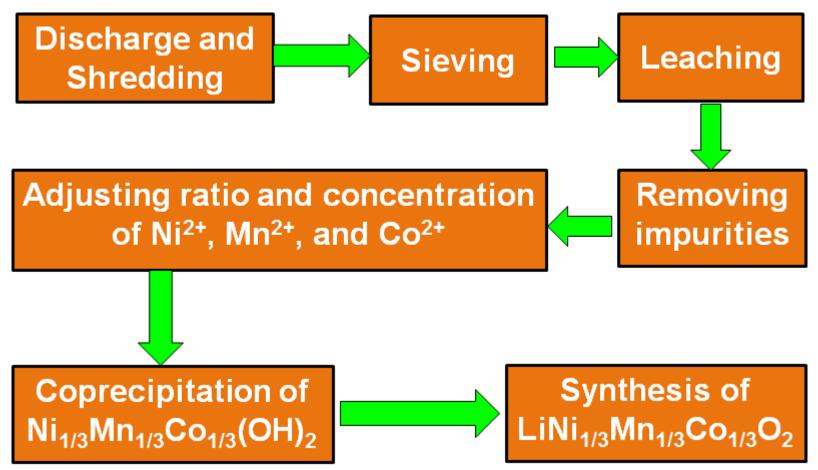
NMC111

Approach: a Close Loop Process


Spent EV battery pack

Shredded pack

25Ah


Recovered cathode powder

Advantages:

- Any size and shape
- No sorting
- Synthesize new LiNi_xMn_yCo_zO₂ directly
- Ratio of Ni, Mn and Co can be specially tailored to customer demands

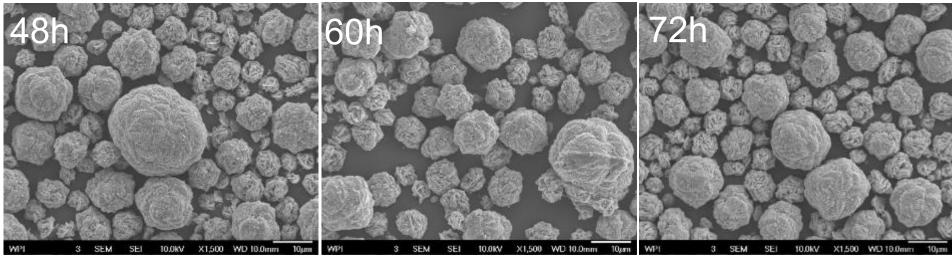
Technical Accomplishment and Progress: Recycling Process Has Been Developed

Recycling process is developed to offer a close loop process for the end of life EV batteries.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

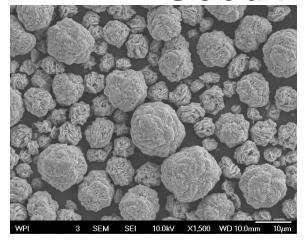
NMC Cathode Has Been Optimized

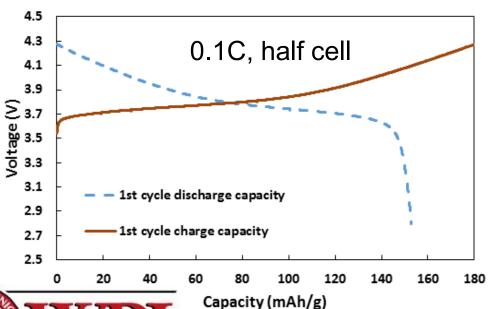
рН	Residence time (h)	Molar ratio of NH ₄ OH to MSO ₄	Stirring speed (rpm)	Cathode tap density (g/cm³)	D50(μm)
10	6-T18	0.56	500	2.48	16.2
10	6-T30	0.47	550	2.65	22.6
10	6-T48	0.46	550	2.84	23.6
10	6-T48	0.46	550	2.52	13.7
10	6-T72	0.45	550	2.50	10.5


The table only shows a few experiments which we conducted.

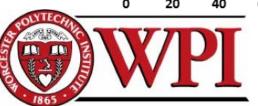
Parameters are optimized to obtain high tap density and low particle size precursor $(Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)_2)$ and cathode $(LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2)$ powders.

Synthesized Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)₂




High tap density, uniform spherical precursor powder.

This presentation does not contain any proprietary, confidential, or otherwise restricted information


Synthesized LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ Shows Good Performance

- Highly uniform cathode powder
- Good electrochemical properties

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Performance Comparisons (tested at A123)

		-					
Parameter (Units)	Before the Program	Current Status	Old Control	New Control	EOP Target		
Particle size (D ₅₀)	N/A	10.5	7.4	9.2	~10 um		
Tap Density (g/cc)	1.60	2.36	2.28	2.84	>2.30		
Impurities ICP results for Na, S, Cu, Fe, Al equal to or below commercial NMC							
FCC/FCD	170/150	181.7/159.1	164.6 / 145.9	174.7/157.2			
Efficiency	88.2	87.6	88.6	90.0			
1C (mAh/g)	N/A	129.1	132.9	130.9	Within 5% Difference		
2C (mAh/g)	N/A	120.5	122.3	119.4	Difference		
5C (mAh/g)	N/A	39.6	36.7	40.4			
Dry adhesion (gf/in)	N/A	N/A	94.3	N/A			
Ni recovery effic. (%)	~70	80.1			>80		
Mn recovery effic. (%)	~70	89.7			>80		
Co recovery effic. (%)	~70	85.0			>80		
Li recovery effic. (%)	~60	70.07			>70		

Responses to Previous Year Reviewers' Comments

<u>Comment 1:</u> The reviewer commented that the approach used in this effort is very effective at addressing the technical barriers identified for this project. One area of concern for this effort will be the quality of the materials that are generated as part of this recycling process. The reviewer advised that this is an area that needs to be more thoroughly addressed as the program proceeds.

<u>Response:</u> In the past year, the team has made very good progress on the synthesized cathode materials. In fact, the team spent most of the resources on this area.

<u>Comment 2:</u> The approach mentioned the need for recovery of Cu and aluminum, but the reviewer noted that there did not seem to be any specific work to accomplish this activity. The reviewer added that the approach to NCM recovery seemed valid.

Response: Although we recover Cu and Al in the recycling process, this is not our main focus.

<u>Comment 3:</u> The reviewer opined that collaboration and coordination with other institutions is one of the only weaknesses in this effort. The reviewer recommended that the program would significantly benefit from a broader collaborative team to include battery manufacturers that have a NMC or mixed metal oxide cathode as part of their base offering. This would provide the team with valuable input regarding the quality of the recycled materials that are being generated from their process and be key at identifying potential issues early in the development process.

<u>Response:</u> Our collaborator (A123 Systems) has significant experience on NMC materials although the main product is LiFePO4. We have benefited a lot from such collaboration. This is confirmed by our research progress.

Collaboration and Partners

Scale-up and commercialization

Fabricate commercial cells

Disassemble EV battery packs

Evaluate cells fabricated with recycled materials

Provide battery packs

Remaining Challenges and Barriers

Scale up

Scale up the recycling process to 20kg spent Liion batteries.

Cell fabrication

2 Ah and 25 Ah cells will be fabricated and tested from different recycling stream.

Proposed Future Work

- Scale-up the recycling process to generate 3kg cathode powder from each recycling stream
- Deliver recovered cathode material to A123 Systems for 2Ah and 25Ah cell fabrication
- Compare the performance of recovered cathode materials with commercial powder

Note: any proposed future work is subject to change based on funding levels

Summary

- A new technology has been proposed and developed by the researchers at WPI which is capable of recovering LiNi_xMn_yCo_zO₂ cathode material.
- The recycling technology offers a close loop process and can recycle Li-ion batteries with any shape, size and chemistry and sorting is not needed.
- Recovery efficiency has been optimized to enable good economic potential.
- The synthesized LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ shows promising material and electrochemical properties.

