Advanced Non-tread Materials for Fuel-Efficient Tires

Timothy A. Okel, Sr. Research Associate (P.I.) Brian Kornish PPG Industries, Inc. June 7th, 2017

Project ID #ACS116

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

Start: 10/01/2016 End: 09/30/2019

BP1 50% complete

As of March 2017

Budget

Total project funding

- \$1,143,464 (Total)
- \$914,771 (DOE), \$228,693 (PPG)

Funding Obligated

• Fully funded

Barriers

Technical Target

 Increase tire fuel efficiency by 2% while maximizing key performance properties in nontread tire components

Technical Barriers

- Reduce petroleum consumption and greenhouse
 gas emissions
- Meet or exceed vehicle performance and cost expectations

Partners

Akron Rubber Development Lab

Relevance

Global Mega-trends affecting Tires: Improve fuel efficiency

Renewed focus on energy loss of non-tread tire components

- Equal to or greater than energy loss attributed to the tread
- One component, sidewall, relatively high contribution
- Historically, silica is known to provide degradative resistance benefits

Carbon Black type and/or loading can address energy loss but has a significant negative impact on degradative resistance

- Agilon[®] Performance Silica addresses the challenges of compounding silica in Natural Rubber[#]
- **Recent sidewall studies[#] partial replacement of carbon black**
 - Hi-Sil[®] EZ160G-D + In-Situ silane showed some benefits
 - Agilon[®] 400G-D showed additional benefits
 - Both manufacturing and performance

Presented at:

- 1. Fall 186th Technical Meeting of Rubber Division, ACS, October, 2014
- 2. Tire Technology Expo 2015, February, 2015
- 3. Tire Technology Expo 2017, February, 2017

Relevance

Tire Components: Historical and Recent Focus

Renewed Focus > Energy Loss of Non-Tread Tire Components

- Rolling resistance / Rolling loss / Energy Loss ► Fuel Efficiency, Heat Build up, Blow-outs
- Fuel-efficiency: Tread \approx 50%, Non-tread components \approx 50%
- Sidewall reported to be as high as 43% but typically 20% of energy loss

Relevance

- Objective: New silica filler that increases fuel efficiency by 2% while maximizing key performance properties in non-tread tire components compared to current filler system
 ✓ Sidewall initial focus
 - ✓ Predictive model: map filler characteristics to sidewall performance
 - ✓ Model compound: \ge 25% reduced energy loss & \le 5% degradation resistance loss

Scope of work:

- ✓Document tradeoffs of existing materials^{*}
- ✓ Predict and develop optimal reinforcing filler *
- ✓Optimize compound formulation[◆]

Key tests/activities:

- ✓ Dynamic properties
- ✓ Impact on migration / diffusion of antiozonants / antioxidants
- ✓ Degradative forces including Ozone resistance *
- ✓ Electrical resistivity *
 - Information not available from previous studies
 - Required to obtain tire manufacturer buy-in
 - Requires specialized equipment / procedures
 - Requires collaborate effort to obtain in an accurate and timely manner

Approach

Focus on sidewall:

- ✓ ~20% energy losses ► impacts tire fuel efficiency
 - > 25% energy loss reduction ► ~1% increase in fuel efficiency
- Protects other tire components against degradative forces
 - > Fuel-efficiency cannot be increased at the expense of degradative resistance
- ✓ Demonstrate with sidewall ► apply to other NR rich non-tread components
 - Combination achieves goal: 2% better fuel efficiency & best overall performance
- Silica technology enables better fuel-efficiency, but impact on other key performance properties requires investigation and optimization
 - Model sidewall formulation
 - Evaluate impact of silica morphology and surface chemistry:
 - Energy loss:
 - Tan δ, loss modulus, and heat build-up
 - Degradative forces:
 - Fatigue to failure, crack growth, abrasion, tear strength, and ozone resistance
 - > Other important criteria:
 - Processing, extrusion, and curing

Approach

Budget Period 1 – Document Tradeoffs – Existing Materials

- Begin populating the database of performance characteristics tied to the physical/chemical structure of existing filler materials
- Refine the method to characterize migration of antiozonants and antioxidants, and begin to synthesize custom materials to broaden the database in BP 2

Budget Period 2 – Predict and Develop Optimal Reinforcing Filler

- Develop a database with custom-made silica fillers to enable statistical analysis of the results
- Identify the surface chemistry and morphology variables that optimize the wide range of required sidewall performance metrics

Budget Period 3 – Optimize Compound Formulations

• Select the top one or two reinforcing fillers and determine the changes that must be made to a model sidewall formula to best realize the benefits of the new filler

Milestones

MS	Description	Planned	Actual
0.1	ARDL PO in place	12/31/2016	12/13/2016
1.1 2.1.1	Test and commercial baseline filler selection finalized	1/31/2017	12/5/2016
2.1.2	Commercial baseline database generated	7/31/2017	In progress
2.2.1	Tradeoffs in commercial baseline identified	11/30/2017	
3.2.1	Silicas with varying surface chemistry synthesized	11/30/2017	In progress
4.1.1	Database updated for silica surface chemistries	6/30/2018	
4.2.1	Silicas with varying morphology synthesized	8/31/2018	
4.3.1	Database updated for morphology & next gen predicted	10/31/2018	
5.1.1	Next gen synthesized	1/31/2019	
5.2.1	Optimized sidewall formulation determined	7/31/2019	
5.3.1	Improvement Achieved	9/30/2019	

Technical Accomplishments

- Task 1: Determine Extraction / Migration / Diffusion Test Procedures
 - Determine the appropriate extraction / migration / diffusion test procedure to use throughout the studies
 - Widely-used anti-degradant protection combo: Wax + diamine (i.e. 6PPD)
 - Amines scavenge free-radicals
 - Waxes migrate to surface form protective film
 - Need to optimize reservoir, migration / diffusion rate and surface appearance
- Status
 - Tests selected
 - Calculate Diffusion (D) constant for 6PPD & Wax
 - Perform heat and light discoloration per ASTM D1148-13
 - Measure 6PPD + wax retention after oven aging of a cured slab
 - Measure 6PPD + wax retention after fatigue testing
 - Verifying with one each
 - Carbon black
 - ➢ Hi-Sil[®] Silica
 - > Agilon[®] Performance Silica

Ozonoloysis is a degradative force that attacks sidewall compounds

Technical Accomplishments

 Task 2: Baseline - Strengths and Weaknesses of Commercial Reinforcing Filler Systems

Status

- ✓ Carbon Black (3), *Hi-Sil (4),* and *Agilon (3)* fillers selected & sourced
- Completed preliminary compounding for all ten fillers to adjust the curatives to get a similar cure state
- Completed compounding ten fillers with adjusted formulation
 - > Verified most test protocols with one Carbon Black, *Hi-Sil,* and *Agilon* filler
 - Ozone test protocols being verified
 - Testing of remaining fillers using verified protocols has started
- Electrical surface resistivity was identified as an additional property that should be monitored in this program
 - Solutions to surface resistivity are not directly part of the program, but may be considered during BP #3 as we optimize the sidewall formulation

Technical Accomplishments – Energy Loss

30% reduction in energy loss as measured by tan δ at 60°C can translate to ≥ 1% increase in fuel efficiency

Technical Accomplishments – Energy Loss

Energy loss reduction giving better fuel efficiency confirmed by:

- 1. Loss Modulus (shown above)
- **2.** RPA Tan δ 100°C, 1.95% strain, 11 Hz
- **3. RPA Tan δ 100°C, 0.98% strain, 11 Hz**

Accomplishments – Electrical Surface Resistivity

Potential to go to lower carbon black level and higher Agilon level and still meet minimum static dissipation requirement ✓ Increases potential to improve fuel efficiency

Response to Previous Year Reviewer Comments

This project is a new start and was not reviewed last year

Collaboration and Coordination with Other Institutions

Akron Rubber Development Laboratory (ARDL)

- Industry recognized vendor conducting testing and analysis
 - Involved with tire and rubber compound development for over 50 years
 - ✓ Aid rubber industry development efforts by primarily focusing on material science
- Wide range of analytical services, compound development & tire testing
 - Ability to solve problems and scientific challenges
 - Adept at conducting failure analysis (damage mode), advanced analytical analysis, and determining root cause mechanisms
 - Strong background in assessing material robustness, particularly in tires
- For this project provides:
 - Additional mixing expertise and capacity
 - Test methods and equipment that PPG does not have in-house
 - Provides expertise in and conducts migration studies

Remaining Challenges and Barriers

- Impact of reinforcing filler properties on processing, degradative forces, and energy loss mechanisms of sidewall formulation, as well as impact on the migration/diffusion of antiozonants/antioxidants
 - ✓ What are trade-offs associated with commercial reinforcing systems
 - ✓ What is a statistically significant improvement in performance
 - ✓ What is the impact of silica morphology & surface chemistry
- Develop sidewall formulation with a balance of properties
 - Determine reinforcing silica(s) with optimized morphology & surface chemistry
 - Determine appropriate combination of curative type and loading, reinforcing filler loading, type of carbon black and carbon black to silica filler ratio, and loading of antioxidant/antiozonant
- Gain tire manufacturers' interest in pursuing this technology

Proposed Future Research

- Finish identifying tradeoffs in commercial materials
- Synthesize silicas with varying surface chemistry
 - Identify tradeoffs with silicas with varying surface chemistry
- Synthesize silicas with varying morphology
 - Identify tradeoffs with silicas with varying morphology
- Use overall database to predict optimum filler(s)
 - ✓ Synthesize optimum filler(s)
- Perform systematic sidewall formulation optimization studies with selected optimum filler(s)
- Verify predicted optimum sidewall formulation

Any proposed future work is subject to change based on funding levels

Summary

• Objective

 New silica filler increasing fuel efficiency by 2% & maximizing key performance properties in non-tread tire components compared to carbon black

Expected Outcome

- ✓ Sufficient lab data to gain tire manufacturers' interest in pursuing technology
- ✓ 25% tan delta improvement & ≤ 5% decrease in key performance properties
 - Prefer improved processing and resistance to degradative forces

Accomplishments

- Tests defined and in process of being verified
 - Qualitative and quantitative measurement of antidegradant migration / diffusion
 - > Verified most test protocols with one Carbon Black, Hi-Sil, and Agilon Filler
- Commercial fillers selected and testing in progress
 - Ability to meet fuel efficiency improvement promising
 - > Agilon ability to at least partially address electrical surface resistivity promising
 - Awaiting results on other key performance properties
- Other surface chemistries defined and synthesis in progress

Technical Backup Slides

Advanced Non-tread Materials for Fuel-Efficient Tires

Background

- PPG: ~\$16B, global corporation, founded in Pittsburgh, PA, 1883
 - ✓ World's largest coatings and specialty materials company
 - ✓ Long history of developing silicas for the tire industry
- Industry focus: Improving fuel-efficiency with silica in tire treads
 - Silica enables reduced mechanical energy dissipation
- Recently PPG developed & patented Agilon® performance silica platform
 - Addresses issues with conventional silica/in-situ silane systems
- Silica developments for passenger tires driven by the fuel efficiency gains
 - Same benefits not seen in tire components comprising natural rubber (NR), (i.e. truck and bus radial treads (TBR) or other non-tread compounds)
 - NR preferred due to resistance to crack growth and tearing
 - NR contaminants interfere with in-situ silica-silane reaction, yielding poor filler dispersion, tire performance, and processing properties
 - ✓ Silica-silane reaction already complete in *Agilon* products
 - Improves rolling resistance compared to carbon black in NR compounds
 - Work published and presented in industry magazines, conferences, and the Annual Merit Review and has been well-received

Black Sidewall

- All-rubber component between the tire's bead and tread areas
- Outer surface protecting casing against degradative forces
- Ozone, weathering, tear, abrasion, fatigue and cracking
 Typical Composition
- 50 / 50 NR and BR
- 40⁺ phr of moderately sized carbon black
- Process oil
- High concentration of antioxidants and antiozonants
- Conventional accelerator-sulfur cure levels

Partial replacement of carbon black with precipitated silica reported to improve performance

- Tear, cut-growth resistance and ozone crack growth resistance
- Potential to reduce hysteretic energy-loss

Sidewall Oxidative & Ozone Resistance

- Key performance: resist oxidative (O₂) aging & ozone (O₃) attack
- Polymers with double bonds in their main chains (i.e. natural rubber and polybutadiene) susceptible to oxidation & ozonolysis
 - Key sidewall polymers
- Exposed surface cracks as material degrades & the chains break
 - ✓ Elasticity & tensile strength loss ► increased flex-fatigue and ozone cracking
- Mode of cracking varies between oxygen and ozone attack.
 - ✓ O_2 ► complex array of shallow crack patterns
 - ✓ O_3^- ► deeper cracks aligned at right angles to the tensile strain
- Wax + diamine most widely-used antidegradant package
 - Alkyl-, aryl-disubstituted paraphenylenediamines commonly used
 - ✓ Amines scavenge free-radicals, waxes migrate form surface protective film
 - Decomposition products discolor the sidewall during service
- Improvement needed: slow migration and/or reduce discoloration
 - No studies investigating ability to improve the lifetime of rubber goods through the rational design of fillers and filler surface chemistry

Balancing Tire Compound Properties

- Reinforcing filler surface area, structure, polarity & coupling efficiency impact processing, degradative resistance & fuel efficiency
 - Changes produce trade-offs in performance
 - Surface area ► filler-filler & filler-polymer interaction ► tear, crack growth, abrasion resistance, processing and fuel efficiency
 - Structure ► absorption kinetics ► migration of components to the surface
 - Surface chemistry ► polarity ► coupling efficiency ► filler-filler & polymer-filler interaction ► abrasion resistance, fuel efficiency, tear and crack growth resistance, antiozonant migration/diffusion
 - Trade-offs seen with current reinforcing fillers
 - Carbon black ► non-polar ► polymers low or no polarity ► strong physical adsorption ► polymer molecular mobility ► treadwear
 - Silica ► polar ► low polymer-filler & high filler-filler interaction ► modify surface with coupling agents ► enables improved balance in treadwear, traction, fuel efficiency

Advantages over Current and Emerging Technologies

- Our approach systematically explores the silica filler design space:
 - high to low polarity, high to low porosity, high to low surface area, and degree of reactivity with the polymer matrix
- Statistical analysis used to identify key response variables
- Enabled by PPG Agilon platform for customizing silica fillers
- Unique to project is studying the interaction between the filler chemistry and ozone cracking resistance
- Expected features and benefits:

Features	Benefits
Decreases hysteresis in sidewall compound	Translates to 1% increase in fuel efficiency per tire (potential for 2% if applied to all non-tread)
Natural Rubber Compatibility	Enables fuel-efficiency in tire compounds that rely on NR, such as sidewalls
Provides better control over ozone degradation and fuel-efficiency improvements in one product	Formulation flexibility for tire manufacturers to optimize performance and cost
Compatible with emerging efficient tire designs, not an either/or solution	Combination with improved tire design can lead to greater fuel efficiency.

