

PROCESS DEVELOPMENT AND SCALE UP OF CRITICAL BATTERY MATERIALS

Gregory Krumdick (PI)

Krzysztof Pupek

Trevor Dzwiniel

Project ID: ES168

June 2016, Washington, D.C.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start date: Oct. 2010
- Project end date: Sept. 2017
- Percent complete: on going

Budget

- Total project funding:
 - \$1.2M in FY15
 - \$1.2M in FY16

Barriers

- Cost: Reduce cost to manufacture materials
- Performance: Determine optimal purity for maximum performance

Partners

- Scaling materials for:
 - Oak Ridge National Lab
 - Argonne's Applied R&D Group
 - Army Research Laboratory
- Supporting battery research for:
 - MIT, Wildcat Discovery, Army Research Lab, CAMX Power LLC, Pacific Northwest National Lab, Sandia National Lab, 24M Technologies, Cidetek, Argonne's CAMP Facility and JCESR battery hub.

Approach - Milestones

• FY15

- Li-FSI Impurity vs. performance study
- GM-Polymer
- SNL PFPBO•LiF
- Fluorinated EMC initiated
- Fluorinated DEC initiated
- LBNL-PFM Si-anode binder study

• FY16

- ORNL LI-BMFBM
- Fluorinated EMC
- Fluorinated DEC
- LBNL Si-anode binders (PPy and PPyE)
- ARL MGC
- FY17
 - 4-6 Electrolyte materials to be scaled
 - Develop specifications for battery grade materials

MILESTONE	DATE Complete
ORNL-Li-BMFBM	
Assess scalability of disclosed process	8/19/2015
Develop and validate scalable process chemistry (10g scale)	1/5/2016
Go/ No Go	GO
First process scale-up (100g bench scale)	2/3/16
Go/ No Go	Pending evaluation
Second process scale-up (1000g pilot scale)	Pending evaluation
FEMC	
Assess scalability of disclosed process	1/9/15
Develop and validate scalable process chemistry (10g scale)	3/16/15
Go/ No Go	GO
First process scale-up (100g bench scale)	6/16/15
Go/ No Go	GO
Second process scale-up (3000g pilot scale)	8/19/2015
DFEC	
Assess scalability of disclosed process	1/16/15
Develop and validate scalable process chemistry (10g scale)	2/19/15
Go/ No Go	GO
First process scale-up (100g bench scale)	5/14/2015
Go/ No Go	GO
Second process scale-up (1000g pilot scale)	5/27/2015
ARL-MGC	
Assess scalability of literature procedures	2/5/2016
Develop and validate scalable process chemistry (10g scale)	3/4/2016
Go/ No Go	GO
First process scale-up (100g bench scale)	3/24/2016
Go/ No Go	Pending evaluation
Second process scale-up (1000g pilot scale)	Pending evaluation
LBNL- Binder Study	
Synthesize polymers	ongoing

Objectives - Relevance

- The objective of this program is to provide a systematic engineering research approach to:
 - Develop **cost-effective** processes for the scale-up of advanced battery materials.
 - Provide sufficient quantities of these materials produced under rigorous quality control specifications for industrial evaluation or further research.
 - Determine material purity profiles and evaluate their influence on battery performance.
 - Evaluate emerging manufacturing technologies for the production of these materials.
- The relevance of this program to the DOE Vehicle Technologies Program is:
 - The program is a key missing link between discovery of advanced battery materials, market evaluation of these materials and high-volume manufacturing
 - Reducing the risk associated with the commercialization of new battery materials.
 - This program provides large quantities of materials with consistent quality
 - For industrial validation in large format prototype cells.
 - To further research on these advanced materials.

Approach And Strategy

- Discovery scientists submit promising new materials.
 - Collaborate on special requests for custom materials not commercially available.
- Prioritize materials based on level of interest, validated performance and scale up feasibility.
 - Discuss candidate materials with DOE for final approval.
- Conduct process R&D and develop performance vs. specification criteria.
 - Scaling to kilogram or larger takes substantial process modifications.
- Make materials available for both basic researchers and industrial evaluators.
 - Provide feedback to discovery chemists, helping guide future research.

Technical Accomplishments And Progress Overview

- Scalable processes were developed and several materials were investigated.
 - Trifluoroethyl methyl carbonate (FEMC) solvent for high voltage electrolyte (complete).
 - Bis(trifluoroethyl) carbonate (DFEC) solvent for high voltage electrolyte (complete).
 - Glycerol methyl dicarbonate (MGD) ARL high voltage electrolyte additive (complete).
 - Trifluoropropylene carbonate (TFPC) solvent for high voltage electrolyte (in progress).
 - Li-BMFMB ORNL alternative to $LiPF_6$ for high voltage cells (in progress).
- Collaboration with CAMP on Si anode binders is ongoing.
 - LBNL-PPy and LBNL-PPyE binder for Gr-Si anode (in progress).
- Next Generation Anodes for Li-Ion Battery
 - "Self-healing" binders for advanced anode (in progress).
- Materials Distribution.
 - Since the program start over 120 material samples have been sent. Over 12,000 g of battery grade materials have been sampled. In FY15 alone, 23 samples totaling over 1700g were sent out.
- A total of 10 materials have now been fully distributed.
- Several materials and processes have been licensed to commercial manufacturers (Strem and Aldrich) for production and distribution for R&D use.

Technical Accomplishments And Progress: Scale Up Of Fluorinated Carbonate Solvents

- Current electrolyte materials fail rapidly at high voltages with 5V LNMO cathode and high energy LMR-NMC cathodes.
- Three solvents with enhanced stability in high voltage electrolytes and better thermal stability were targeted.
- The materials are not commercially available.

methyl (2,2,2-trifluoroethyl) carbonate (FEMC)

bis(2,2,2-trifluoroethyl) carbonate (FDEC)

3,3,3-trifluoropropylene carbonate (TFPC)

Technical Accomplishments And Progress: Scale Up Of FEMC

- The standard literature synthesis uses chlorinated solvents and tertiary amines as an auxiliary reagent.
- Traces of chlorine bearing compound (solvent and/or amine hydrochloride) may be carried over contaminating the final material. MERF developed a greener process eliminating both dichloromethane and the amine reducing number of synthesis steps and minimizing waste generation.
- Nearly 3 kg of the material was manufactured and 250 g already provided to research community.

Argonne	FEMC					
Description	Methyl (2,2,2-trifluoroethyl) carbonate					
CAS #	156783-95-8					
Formula	C ₄ H ₅ F ₃ O ₃					
FW	158.08					
LOT #	TD7-271					
Purity	99.8% ¹					
Batch Size	2900 g					
Manufactured	8-20-15					
Analysis	Method	Results	Analysis By:			
GC/MSD	Agilent DB-5MS, 0.25 um, 30m x 0.250 mm, 25 deg/min	99.8% ^{1,2}	T. Dzwiniel			
Boiling Point	Automatic, range method (Buchi M- 565)	104-106°C	T. Dzwiniel			
Flash Point	Pensky-Martens Closed Cup	37°C	T. Dzwiniel			
KF Moisture Titration	Coulometric (KEM MCU-610) TBD ppm		K. Pupek			
FTIR	Bruker Vertex 70, Attenuated Total Consiste		T. Dzwiniel			
r i in	Reflection	with Structure	1. Dzwiniel			
NMR	¹ H, ¹⁹ F, ¹³ C Bruker 500 MHz, CDCl ₃	Consistent	T. Dzwiniel			
NMK	solution.	with Structure	r. Dzwiniel			

Technical Accomplishments And Progress: Chlorine Free Synthesis Of FDEC

- The standard literature synthesis uses phosgene or triphosgene as a 2,2,2-trifluoroethanol coupling reagent.
- MERF developed novel, chlorine-free, safe and environmental friendly process. The new process provides high purity solvent in good yield.
- Scale up of the material is completed. Single batch of 1 kg was produced out of which 250 g of the material was already distributed.

	FDEC				
Description	Bis (2,2,2-trifluoroethyl) carbonate				
CAS #	1513-87-7				
Formula	C5H4F6O3				
FW	226.07				
LOT #	TD7-241				
Purity	>99.95%1				
Batch Size	1056 g				
Manufactured	5-28-15				
Analysis	Method	Results	Analysis By:		
GC/MSD	Agilent HP-5MS, 0.25 um, 30m x 0.250 mm, 30 deg/min	>99.95% ^{1,2}	T. Dzwiniel		
Boiling Point	Automatic, range method (Buchi M- 565)	118-119°C	T. Dzwiniel		
Flash Point	Pensky-Martens Closed Cup	No flash	T. Dzwiniel		
KF Moisture Titration	Coulometric (KEM MCU-610)	K. Pupek			
FTIR	Bruker Vertex 70, Attenuated Total	Consistent	T. Dzwiniel		
FIIN	Reflection	with Structure	r. Dzwinier		
NMR	¹ H, ¹⁹ F, ¹³ C Bruker 500 MHz, CDCl ₃	Consistent	T. Dzwiniel		
INIVIA	solution.	with Structure	r. Dzwiniel		

Technical Accomplishments And Progress: Chlorine Free Synthesis Of TFPC

- 3,3,3-Trifluoropropylene carbonate (TFPC) is a partially fluorinated cyclic carbonate that imparts higher temperature and voltage stability.
- Floating test of 0.5 M LiPF₆ in TFPC/FEMC, 4.9 V to 5.2 V at r.t. and 55°C revealed decrease in current leakage compared to EC/FEMC solvents blend (Meinan He et al. J. Electrochem. Soc. 2015; 162: A1725-A1729).

Technical Accomplishments And Progress: Investigating Properties Of Fluorinated Carbonates

- MERF evaluates basic properties and usability of the solvents for electrolytes formulations (salts solubility, miscibility).
- Unexpected tendency for the formation, aggregation, and phase separation of lithium ion coordination polymers in certain fluorinated electrolytes containing FEC was observed.
- The crystalline aggregates were separated and studied by NMR and single crystal X-ray.
- The aggregates always have 1:3 molar ration between lithium ion and FEC.

Technical Accomplishments And Progress: Synthesis Of Methyl Glycerol Carbonate

- It was previously demonstrated that addition of methyl ((2-oxo-1,3-dioxolan-4yl)methyl) carbonate (MGC) to Gen2 electrolyte improves capacity retention (D. Abraham et al., ANL, 2010).
- More recently MGC revealed promising results in 4.9 to 5.2 V current leakage test at 0.5 % w/w (K. Xu et al., ARL, 2016).
- MERF developed proprietary process for manufacturing high purity material (>99.9%) without the need for non-scalable sublimation step.
- 300 g of the material was synthesized, analyzed and is ready for distribution.

Technical Accomplishments And Progress: Scale Up Of Alternative Li Salt

- Alternative to LiPF₆ for high voltage cells with better thermal stability. (*Chem. Commun.*, 2015, 51, 9817).
- Initial process development complete with several improvements.

- Overall, reduced # of steps by 33%.
- Reduced time by estimated 70% (exclusive of final purification).
- Removed hazards from: alkali metals, metal hydrides, concentrated acids, and water-reactive materials.
- Eliminates the non-selective silylation procedure.
- Currently developing derivatives to support HV/HE and JCESR programs.

Technical Accomplishments And Progress: Scale Up Of LBNL Binder For Si Anode

- MERF is collaborating with CAMP on synthesis and testing of 3rd generation of LBNL conductive binder for silicon anode.
- Both homopolymer PPy and co-polymer PPyE were prepared.
- The materials were forwarded to CAMP for manufacturing of electrodes.
- NanoAmor Si nanopowder (50-70 nm) was wet coated with PPyE (90/10 w/w ratio) and ball milled.
- CAMP used the blend to make and test composite anode.

$\sqrt{1}$	PPy						
		LBNL	MERF	0~0 0~0		LBNL	MERF
	Mw (kDa)		TBD		Mw (kDa)		96
	Mn (kDa)	21	TBD		Mn (kDa)	34	31
	PDI	2.5	TBD	_6	PDI	2.9	3.1

Technical Accomplishments And Progress: "Self-healing" Binder For Advanced Anode

- The binders are co-polymers of acrylic acid lithium salt and acrylate based comonomer bearing hydrogen bond donor and hydrogen bond acceptor.
- As a part of the multi-laboratory Next Generation Anode Program MERF is designing, synthesizing and testing new binders for silicon anode.
- Such co-polymers can expand and contract supramolecular structures ("selfhealing") thereby improving mechanical integrity of the anode.

hydrogen bond donors and acceptors sites

 R^{1} , $R^{2} = H$, Alk, Ar, N-Het, O-Het, CONR₂, NR³R⁴ R^{3} , $R^{4} = H$, Alk, COAlk, COAr, CONR₂

Prepared. Pending electrochemical evaluation.

Technical Accomplishments And Progress: Investigating Performance Of LiFSI Based Electrolyte

- MERF continues to investigate LiFSI-based electrolytes in various cell chemistries.
- We examine the cycling of 20 mAh pouch cells with LiFSI-carbonate electrolytes, silicon-graphite negative electrodes, and NCM253 positive electrodes.
- The effect of FEC and VC addition on cell performance was examined and compared to baseline $LiPF_6$ cells.
- The performance of LiFSI-FEC and LiPF₆-FEC cells are very similar indicating that the electrolyte salts play a much smaller role in performance degradation than the electrolyte solvent.

Technical Accomplishments And Progress: Materials And Processes Licensing

1NM2

- Nine materials scaled up by MERF were licensed to Strem Chemicals and three materials to Sigma-Aldrich for manufacturing and distribution for R&D use.
- MERF provided the manufacturers with detailed Technology Transfer Packages for each material.
 - Contains detailed synthesis procedures, process schematics, material mass balances, product physico-chemical characterization, analytical and quality control data.
- The materials will soon be available to the research community via the vendor's catalogs.

Response To Previous Year Reviewer' Comments

This project was not reviewed last year.

Collaborations

- Materials process R&D:
 - Lawrence Berkeley National Lab (Gao Liu) and Argonne's CAMP facility (Andrew Jansen, Bryant Polzin, Steve Trask)
 - Si-binder synthesis, anode formulation, and cell testing
 - Argonne National Lab (John Zhang)
 - Synthesis of high voltage solvents FEMC, DFEC, TFPC
 - Oak Ridge National Lab (Xiao-Guang Sun)
 - Lithium salt for high voltage applications
 - Army Research Laboratory (Kang Xu)
 - Additive for high voltage stability
- Material samples provided for further research:
 - Army Research Lab
 - Pacific Northwest National Lab
 - Sandia National Laboratory
 - MIT
 - JCESR
 - Wildcat Discovery
 - CAMX Power LLC
 - SolidEnergy Systems
 - 24M Technologies
 - Cidetek

Remaining Challenges And Barriers

- New battery materials are continually being discovered and developed, but industry is typically unable to model the cost of production using bench scale processes and obtain large samples for evaluation.
- There is a strong demand from the research community for high quality, uniform experimental materials.
- A detailed understanding of impurity profiles of experimental materials used in the battery community is needed, as well as their effect on battery performance.
- Battery grade specifications are needed for newly developed battery materials to minimize cost.
- Emerging manufacturing technologies need to be evaluated to further reduce production costs of battery materials.

Activities For Next Fiscal Year

- Target 4-6 new materials for battery development.
 - Develop scalable process, analytical methods and quality control procedures.
 - Validate the manufacturing process, analytical and electrochemical properties.
 - Characterize the impurity profile.
 - Supply material samples to the research community and industry for evaluation.
- Investigate analytical purity vs. electrochemical performance for new material.
- Evaluate new technologies/processes with a focus on Green Chemistry.
 - Continuous processes using flow chemistry.
 - Fast mass and heat transfer; accurate control of reaction.
 - Allow rapid optimization of reaction parameters.
 - Low usage of reagents in the optimization process.
- Program is open to suggestions for new, advanced materials.
 - Currently evaluating several requests for scale-up.

Summary

- This program has been developed to provide a systematic approach to process R&D and scale-up, and to provide sufficient quantities of advanced battery grade materials for industrial evaluation.
- Argonne's process R&D program enables industry to carry out large-scale testing of new battery materials and enable scientists to obtain consistent quality, next generation materials for further research.
- Integration of materials discovery with process R&D will expedite the time needed for commercial deployment.
- Over 120 samples have been presented to collaborating research entities.
 - Several materials have been fully distributed.
 - Completed licensing agreements with Strem Chemicals and Sigma-Aldrich for production and distribution of scaled materials for R&D use.

Technical Summary:

- Completed 2 fluorinated solvents for HV electrolytes: F-DEC and F-EMC.
- Third fluorinated solvent (TF-PC) in progress.
- Two materials (ORNL-Li-BMFBM and ARL-MGC) scaled to >100g.
- LBNL- Si-Anode binder study (PPyE) ongoing.

Acknowledgements And Contributors

- Support from David Howell and Peter Faguy of the U.S. Department of Energy's Office of Vehicle Technologies is gratefully acknowledged.
- Argonne National Laboratory
 - Daniel Abraham
 - Andrew Jansen
 - Brian Polzin
 - Steven Trask
 - James Ciszewski
 - John Zhang
 - Wenquan Lu
 - Gerald Jeka
 - Mike Kras
 - Ira Bloom

- Lawrence Berkeley National Laboratory
 Gao Liu
- Oak Ridge National Laboratory
 Xiao-Guang Sun
- Army Research Laboratory
 Kang Xu

For samples and further information:

www.anl.gov/merf

Technical Backup Slides

Materials Produced

Solvents	Shuttles	Salts	Additives	Binders
ANL-1NM2	ANL-RS2*	Li-DFOB*	ARL-HFiPP*	LBNL-PFM*
ANL-1NM3*	ANL-RS5	Li-TDI	ARL-LIPFTB	LBNL-PEFM*
ANL-2SM3*	ANL-RS6	SNL-PFPBO•LiF	CWR-FRION	LBNL-PPyE*
ANL-1S1M3	ANL-RS21	Li-FSI*	GM separator*	LBNL-PPy
F-EMF	ANL-RS51	ORNL-LIBMFMB	ARL-MGC	
F-DEC				
TF-PC				
* Materials fully distributed				

For samples and information:

www.anl.gov/merf

