
2016 DOE VEHICLE TECHNOLOGIES ANNUAL MERIT REVIEW

Next Generation Inverter

Project ID # EDT040

GENERAL MOTORS

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

OVERVIEW

Timeline

- Start October 2011
- Finish January 2016
- 100% Complete

Cost

- Efficient
- Efficiency
- Performance and Lifetime
- Mass and Volume

Funding

	DOE	GM
Budget	\$6.00M	\$10.60M
FY11	.04M	.06M
FY12	1.18M	2.09M
FY13	1.94M	3.46M
FY14	1.92M	3.57M
FY15	.73M	1.30M
FY16	.01M	.02M
Total	\$5.82M	\$10.50M

Partners

Barriers

- Lead General Motors
- Tier 1, 2, & 3 Suppliers Hitachi, Delphi, Infineon, HRL,
 Panasonic, AVX, Kemet, and
 Interplex Industries, etc.
- Collaborations National Renewable Energy Laboratory, and Oak Ridge National Laboratory

RELEVANCE

Research Focus Area: Inverter

- Modularity/Scalability
- Components power module, gate drive, capacitor, current sensor and control card
- Supplier development

Objective

 Develop the technologies and product design for a low cost highly efficient next generation inverter capable of 55kW peak/30kW continuous power.

Addresses Targets

- Cost: \$3.30/kW produced in quantities of 100,000 units
- Power Density: 13.4kW/l; Specific power: 14.1kW/kg
- Efficiency >94% (10%-100% speed at 20% rated torque)

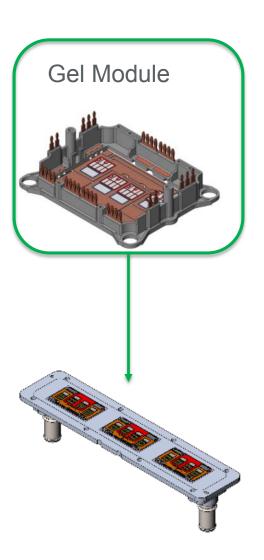
Uniqueness and Impacts

- Technology Co-development with the Tier 1, 2, and 3 suppliers
- Detailed knowledge of vehicle application and ability to understand and assess vehicle impacts to make necessary materials and technology tradeoffs.

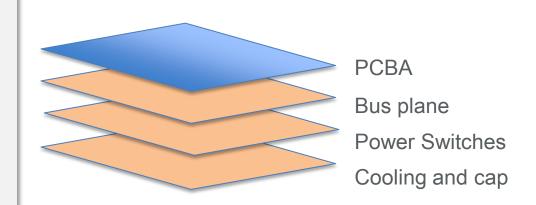
MILESTONES

Month /Year	Milestone or Go/No-Go Decision	Status
June 2012	Power Inverters Based on Conventional, Transfer Molded, and Encapsulated Power Module Technology Delivered for Evaluation	Complete
Jan 2013	Initial Technology and Production Cost Assessment Complete with Report	Complete
Jan 2014	Concept Design Review – DOE "Go/No-Go" Decision	Complete
Sept. 2014	Critical Design Review (original scheduled for June 2014)	Complete
Aug. 2015	Demonstration of Inverter Performance	Complete
Sept. 2015	Final cost estimation (originally scheduled for Sept. 2014)	Complete
Dec. 2015	Preliminary reliability study	Complete

MODULE TECHNOLOGY EVALUATION COLLABORATED WITH ORNL

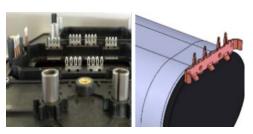

Direct Cooled Transfer Mold

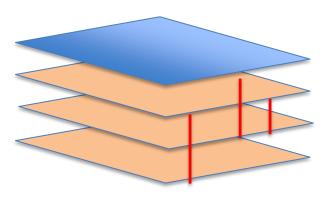
Encapsulated Discrete Device


- Relatively mature manufacturing processes, which can be improved to lower cost and increase product performance.
- Highly efficient single-sided can be achieved.
- Can be adapted to work with wide band-gap power devices
- Offers scalability

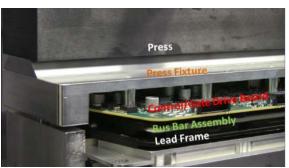
INVERTER DESIGN: INTEGRATED POWER STAGE

- Integrated power stage:
 Eliminate boundaries and empty spaces; new partitioning of functionality
- Vertically integrated process: Power stage manufacturing integrated into inverter assembly
- Manufacturability:

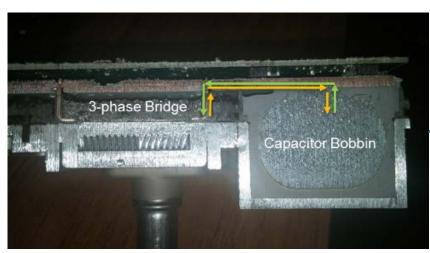

 Unidirectional (bottom to top) assembly process;
 reduced assembly steps


INVERTER DESIGN: PRESS-FIT PINS

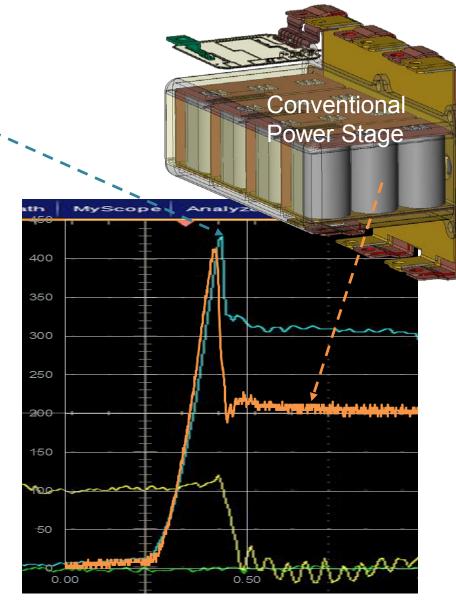
COLLABORATED WITH INTERPLEX INDUSTRIES, INC



PCBA
Bus plane
Power Switches
Cooling and cap

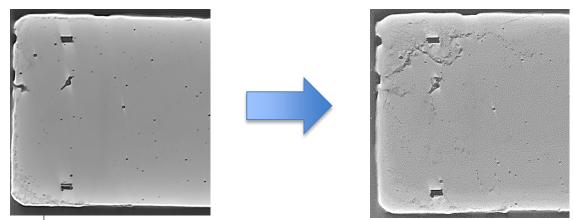

- Reliable joints for connecting two electronics components.
- Make multiple connections with one press operation.
- Process development
 - Fabrication of pins
 - Hole size and tolerance on PCBA
 - Press operation

INVERTER DESIGN: DBC DIRECTLY ATTACHED TO CLOSED COOLING MANIFOLD



- Switching circuitry built directly on closed cooling manifold
- Thermal performance on par with Cu pin-fin base-plate
- Manufacturability
 - DBC to Al attach is a challenge
 - Vertically integrated process

INVERTER DESIGN: LOW INDUCTANCE DC LOOP (INVERTER LEVEL)



- Low stray inductance in the complete DC loop
- Manufacturability
 - Vertically integrated process
 - Press-fit pins

INVERTER BUILD: PROCESS DEVELOPMENT

- Key Processes: die attach, DBC attach, wire bonding, encapsulation of dies and cap bobbins, press-fit pin, final assembly
- Die/DBC attach
 - 20+ configurations evaluated oven type, solder type, processing parameters
 - Evaluation: Yield, thermal shock (-55°C to 150°C), 3D Xray, Cross-Sectioning
- Encapsulation
 - 5 Configurations evaluated chemistry, process parameters
 - Evaluation: High temp / high humidity

GENERAL MOTORS

3D X-Ray: DBC attach before and after thermal shock

INVERTER BUILD: PROCESS FLOW

Substrate Asm

Manifold Asm

Attach

Clean / X-ray / Insp.

Press Coolant Fittings

Press Cap to Pwr Plane

Fab / Test Ctrl/GD Brd

Clean Ctrl/GD Brd

Prep cast frame

Frame Asm & Fast.

Interconnect

Cure Adhesive

Electrical Test

Feed Thru / I-Sen / Fast

Press Power Plane Asm

Silgard / Degas / Cure

Cap potting / Cure

Spacer Frame

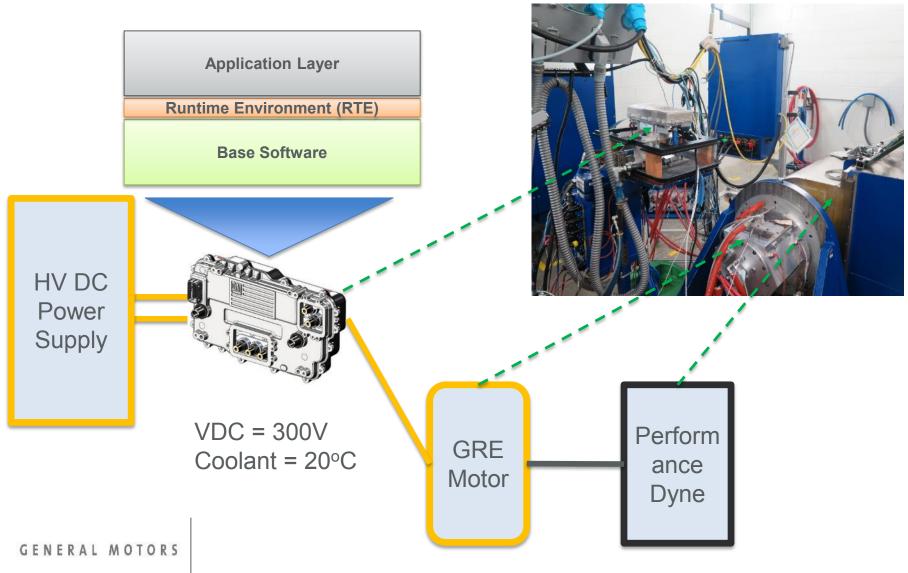
Press Control Board & Fast

Harness & Cover

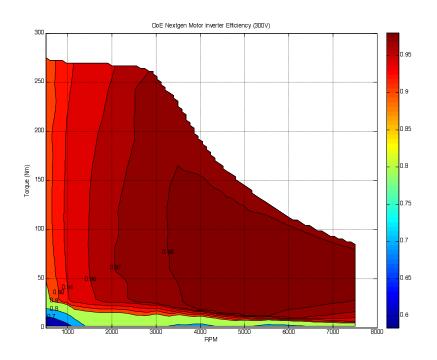
EOL Test

Adhesive Disp.

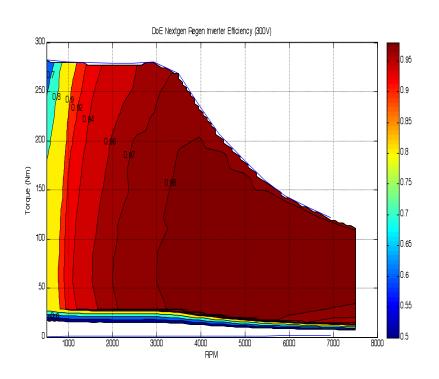
GENERAL MOTORS


INVERTER ACCEPTANCE TEST

INVERTER PERFORMANCE VERIFICATION


TEST SETUP

13


INVERTER PERFORMANCE VERIFICATION

EFFICIENCY

Max Phase Current: 319
 Arms

Max Regen Power: 87 kW

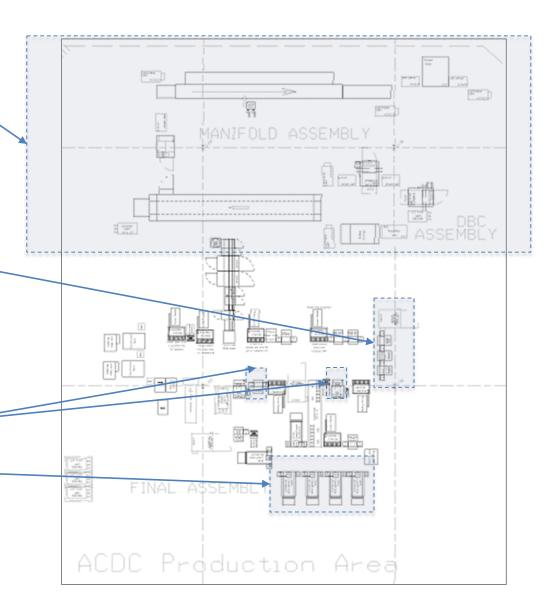
Max Phase Current:
 320 Arms

NEXT GEN INVERTER COST STUDY

CRITICAL OPERATIONS

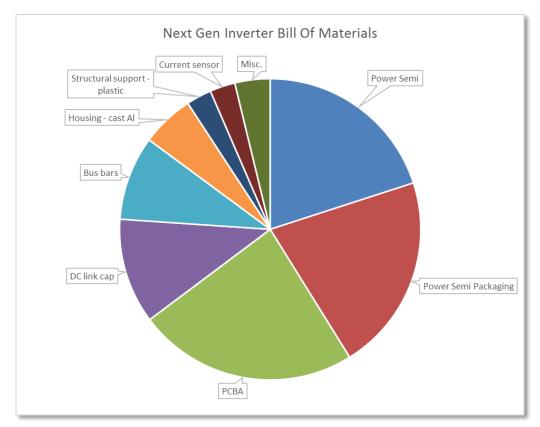
Manifold Assembly

- P&P thin dies
- Die and substrate attach
- Washing

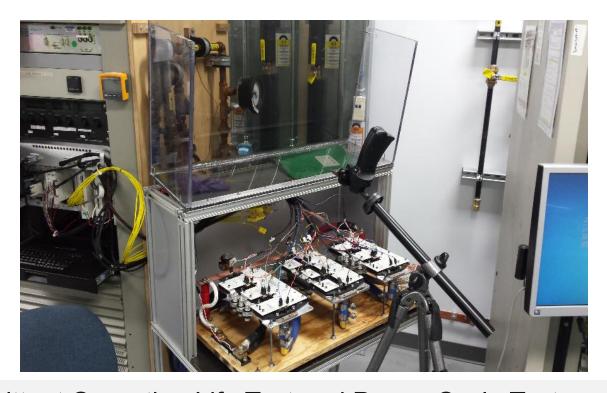

Encapsulation

- Potting dispense (for caps)
- Sylgard dispense (for dies)
- Vacuum
- Cure

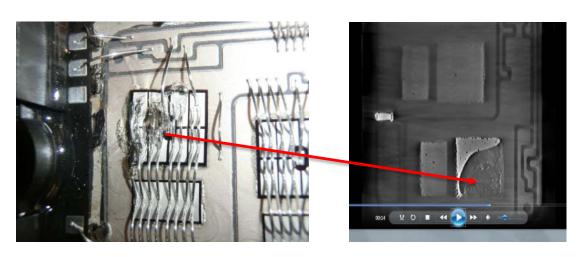
Compliant Pin Press

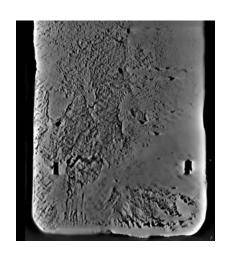

Wire bonding

GENERAL MOTORS


NEXT GEN INVERTER COST STUDY

BILL OF MATERIALS


- Achieved significant reduction of "non-power-conversion" materials
- Power semi cost dominant
- Higher volume needed to reduce PCBA cost


RELIABILITY TEST

- Intermittent Operating Life Test and Power Cycle Test per GM production inverter test requirements
- Test to failure
- Solder layer reliability study, collaborated with NREL.

RELIABILITY TEST FINDINGS AND NEXT STEPS

- Root Cause Rth increased due to degradation in substrate attach => High Tj => die solder reflow and wire bond failure.
- NREL study confirm that substrate attach in this configuration does not have required reliability.
- "Stress relief" added to new configuration new configuration will be evaluated (outside of this cooperative agreement)

CONCLUSION

- Prototype met DOE 2020 power density target
- Design is projected to meet DOE 2020 cost target at scaled up power level
- Highly integrated design requires vertically integrated manufacturing processes
- Substrate attach process needs further improvement for this design to meeting automotive reliability requirements

THANK YOU FOR YOUR ATTENTION!

